

Mittelspannungsschaltanlage für Verteilnetzlösungen

CGMCOSMOS

Voll gasisoliertes modulares und kompaktes System (RMU)

Bis 24 kV Bis 27 kV

IEC-Normen
ANSI / IEEE-Normen

medium VOLTAGE AG

Langackerstrasse 25 CH 6330 Cham Tel. +41 41 783 18 18 Fax +41 41 783 18 19 info@mediumvoltage.ch www.mediumvoltage.ch

Reliable innovation. Personal solutions.

www.ormazabal.com

INHALT

EINLEITUNG	1
Vorwort	1
Ihr elektrisches Netz	2
Ihr Geschäft und DNS-Anwendungen	2
Unsere Produktlandkarte (SSS & DNS)	3
HAUPTMERKMALE	4
Sicherheit	4
Zuverlässigkeit	4
Effizienz	5
Nachhaltigkeit	5
Kontinuierliche Innovation	5
TECHNISCHE DETAILS	6
Produktfamilie	6
Technische Daten	7
Aufbau	8
Weltweite Zertifizierung und Einsatz	8
Konstruktionsmerkmale	9
Schlüsselkomponenten	9
Haupträume	10
Smart Grids	12
Schutz und Automatisierung	12
Modultypen	14
Weitere Komponenten und Zubehörteile	32
HANDHABUNG, AUFSTELLUNG	
UND KUNDENDIENST	35
Handhabung	35
In Gebäuden	35
In mobilen oder fabrikfertigen Transformatorstationen	36
In Windturbinen	36

Die Qualität der von **Ormazabal** entwickelten, gefertigten und installierten Produkte wird durch die Implementierung und Zertifizierung eines auf der internationalen Norm ISO 9001:2008 beruhenden Qualitätsmanagementsystems unterstützt.

Unser Umweltbeitrag wird durch die Implementierung und Zertifizierung eines Umweltmanagementsystems beruhend auf der internationalen Norm ISO 14001 unterstützt. Die Konstruktion und Qualität unserer Produkte werden ständig weiterentwickelt. Daher behalten wird uns vor, ohne vorherige Ankündigung Änderungen an den Merkmalen der in diesem Katalog enthaltenen Elementen vorzunehmen.

Diese Merkmale sowie die Verfügbarkeit der Bauteile haben erst nach Bestätigung durch **Ormazabal** Gültigkeit.

Einleitung

Vorwort

Seine jahrzehntelange Erfahrung in der Forschung, Konzipierung, Entwicklung, Fertigung und Installation von Mittelspannungsschaltanlagen und -schaltgeräten hat Ormazabal zu einem der weltweit führenden Anbieter von gasisolierten Mittelspannungsschaltanlagen (GIS) gemacht. Gegenwärtig sind ca. 1 300 000 Mittelspannungseinheiten von Ormazabal in den elektrischen Netzwerken von über 100 Stromversorgungsunternehmen und 600 Windparks in mehr als 110 Ländern in Betrieb.

Unseren vollständigen GIS-Anlagen GA, CGM, CGC und GAE folgend, wurde das erste **CGMCOSMOS** im Jahr 2000 eingeführt, das als die flexibelste Reihe modularer und kompakter Block-Schaltanlagen (RMU) für sekundäre Verteilnetze bis zu 24 kV gilt. Dank des kontinuierlichen Erfindergeistes unseres spanischen und deutschen F+E-Teams wurde das **CGMCOSMOS**-System entsprechend den Anforderungen unserer Kunden kontinuierlich zu einer erweiterten Reihe mit höheren elektrischen Größen weiterentwickelt. Zu 100% in Europa gefertigt, wurde das **CGMCOSMOS**-System bereits in zahlreiche Smart Grid-Anwendungen integriert. Gegenwärtig sind in über 60 Ländern mehr als 350.000 **CGMCOSMOS**-Einheiten in Betrieb.

Das **CGMCOSMOS**-System liefert zuverlässige und effiziente Verteilnetzwerke (DNS) für jede Art von Mittelspannungsinstallation von Stromversorgungsunternehmen bis Infrastrukturen, von Freizeiteinrichtungen bis industriellen Anlagen und von Windparks bis Photovoltaikanlagen.

Ormazabal ist führender Anbieter kundenspezifischer Lösungen für Stromversorgungsunternehmen und Endnutzer sowie für Systeme zur Nutzung erneuerbarer Energien, die auf unserer eigenen Technologie basieren.

Wir fördern die Entwicklung der **Elektrobranche** im Hinblick auf die mit dem zukünftigen Energiebedarf verknüpften Herausforderungen. Wir arbeiten mit den weltweit führenden Unternehmen in diesem Sektor auf lokaler, regionaler und globaler Ebene zusammen und engagieren uns in hohem Maße für Innovation, um persönliche Sicherheit, die Zuverlässigkeit von Stromnetzen, Energieeffizienz und Nachhaltigkeit zu gewährleisten.

Wir blicken auf eine mehr als 100jährige Geschichte zurück, in deren Verlauf unsere hoch qualifizierten und innovationsbegeisterten Fachkräfte vielfältige Produkte und Lösungen entwickelt haben. Unsere Tätigkeit ist stets von enger Zusammenarbeit mit den Kunden zur Schaffung langfristigen gegenseitigen Nutzens geprägt.

Velatia ist ein internationale Industrie- und Technologiegruppe mit Tätigkeitsschwerpunkt in den Bereichen elektrische und elektronische Netze, Kommunikationsnetzwerke sowie in der Beratungs-, Sicherheitsund Luftfahrtbranche, wo es vor allem auf Sicherheit, Effizienz und Zuverlässigkeit ankommt.

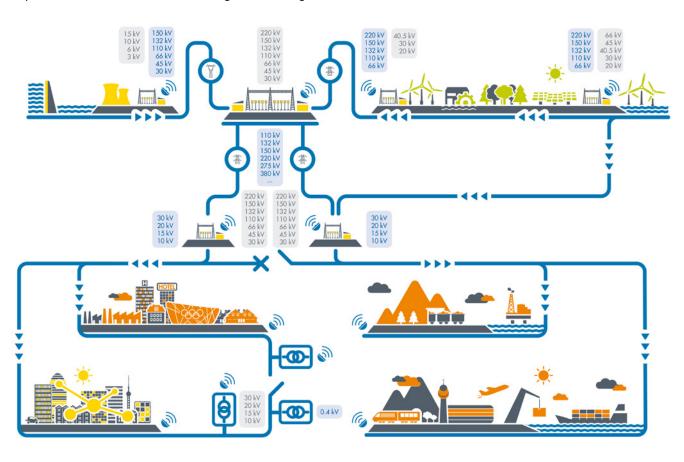
Die Gruppe Ormazabal operiert jetzt unter dem Namen Velatia.

Wir kombinieren Energien und Potenziale, um zu einer stärkeren Gruppe zusammen zu wachsen. Die Unternehmen der Gruppe vereinen insgesamt mehr als 100 Jahre Branchenerfahrung und Engagement für Innovation mit dem Ziel, die aktuellen und zukünftigen Anforderungen unserer Kunden zu erfüllen – unabhängig von ihrem Standort.

Die Lösungen der Unternehmen, aus denen Velatia gebildet wird, sollen die Welt näher zusammenbringen und nachhaltiger, intelligenter, sicherer und menschlicher machen.

Red Hills Windpark (Oklahoma, USA)

Gotthard Tunnel (Schweiz)


Smart-City Málaga (Spanien)

Ihr elektrisches Netz

"Ihr spezialisierter Partner für zuverlässige und intelligente elektrische Netze"

Ihr Geschäft und DNS-Anwendungen

Unsere engen Kundenbeziehungen und ein umfassendes
Wissen rund um die
Elektrizitätsbranche versetzen uns in die Lage, auf Produkten und Dienstleistungen mit hohem Mehrwert basierende Distribution Network Solutions (DNS) (Verteilernetzwerklösungen) anzubieten, die auf die Anforderungen von Energieversorgern, Endbenutzern und Systemen zur Nutzung erneuerbarer Energien zugeschnitten sind.

Distributoren

Unsere Produktlandkarte (SSS & DNS)

Wir glauben, dass Exzellenz nicht nur effektive Produkte und Dienstleistungen umfasst, sondern auch die Fähigkeit, individuelle Anforderungen und Bedürfnisse zu bedienen.

Wir bieten unseren Kunden personalisierte Projekte für ein effizientes Energiemanagement mit **Anlagen** und **Lösungen für primäre und sekundäre Verteilnetze**.

Unser Geschäftsbereich

SSS

SSS: Lösung für Transformatorstationen zur Primärverteilung

DNS: Lösungen für Verteilnetze zur Sekundärverteilung

Unsere Produkte für Ihren Geschäftsbereich

		GAE		Ci	BOR	ORMA-	Vorgefertigte
	1250kMAX	AMC	A-CiBOR	NVL-CiBOR	CONTAINER	Transformatorsta- tionen	
555			<u> </u>				

	ссм.з	GAE	GA	CGMCOSMOS [IEC - ANSI / IEEE]	CGMCOSMOS [HN]	EA
			V	erteiltransformatoren		Niederspan-
	Schutz, Automa	tion und Kontrolle	Herkömmliches Öl	ORGANISCH	TPC	nungsschalttafel
DNS						
	Fabrikfertig	e Transformatorstationen	(TS) aus Beton	Fabrikfertige .		
	Unterirdisch	Begehbar	Kompakt	Transformatorstationen (TS) aus Metall	CEADS	Schaltnetzknoten
			2 2 2			9000
	Betongeh	äuse für Transformators	tationen (TS)		Photovoltai-	Mobile
	Unterirdisch	Begehbar	Modular	Metallgehäuse für TS	kanlage	Transformators- tation

Hauptmerkmale Sicherheit

Schutz für Personen, Umwelt und Ihre elektrischen Anlagen.

Besondere Aufmerksamkeit gilt der **persönlichen Sicherheit** des Bedienpersonals und der allgemeinen Öffentlichkeit, auch **unter fehlerhaften Bedingungen.**

Lichtbogen

Die **CGMCOSMOS**-Schaltanlagen wurden so konzipiert, um den Wirkungen einer Störlichtbogens gemäß IEC 62271-200 (IAC) / IEEE Norm C37.20.7 (1D-S) standzuhalten.

Hermetisch abgeschlossen

Alle spannungsführenden Bauteile befinden sich in einem hermetisch abgeschlossenen **Druckbehälter** aus Edelstahl. Dieser schützt vor strengen Witterungsbedingungen und indirekten Kontakten.

Verriegelungen

Die CGMCOSMOS Schaltanlagen verfügen entsprechend der Norm IEC 62271-200 über mechanische und elektrische **Verriegelungen**,um einen sicheren und zuverlässigen Service zu gewährleisten.

Verriegelungen für hohe Bediensicherheit:

- Der Schalter-Trennschalter und der Erdungstrenner können nicht gleichzeitig geschlossen werden.
- Der Zugangsdeckel zu den Mittelspannungskabeln kann nur dann geöffnet werden, wenn der Erdungstrenner geschlossen ist.

Erhältlich sind optionale Verriegelungen, Schlösser mit Schlüsseln und elektrische Verriegelungen auf Grundlage der spezifischen Kundenanforderungen.

Anzeigen

Zusätzliche Sicherheit durch Verwendung von:

- Schalterpositions-Anzeige:
 Optische Anzeige der an der Übersichtsdarstellung, die mit dem Test der kinematischen Kette gemäß der geltenden Normen (IEC 62271-102) freigegeben wird.
- Kapazitive Spannungsanzeige: ekorVPIS: eine selbstgespeiste Anzeigeeinheit, die die anliegende Spannung in den Phasen über drei kontinuierlich aufleuchtende Anzeigelampen anzeigt (IEC 62271-206). ekorIVDS: Leuchtanzeige für anliegende/nicht anliegende Spannung (IEC 61243-5).
- Akustischer Alarm:
 ekorSAS Alarmwarnung
 bei Erdung, wenn
 Mittelspannungskabel Spannung
 führen. Einsetzbar in Verbindung
 mit ekorVPIS / ekorIVDS.
- Phasenvergleicher: ekorSPC

Zuverlässigkeit

Für eine unterbrechungsfreie Versorgung Ihres elektrischen Netzes

Dauerhaft isoliert und abgedichtet

Innenisolierung eines rostfreien Stahl-Druckbehälters liefert eine lange Lebensdauer (30 Jahre) und Wartungfreiheit der spannungsführenden Bauteile.

Geeignet für jede Umgebung

Unempfindlichkeit gegenüber aggressiven Umgebungen (Feuchtigkeit, Salzhaltigkeit, Staub, Verunreinigung usw.). Ununterbrochene Versorgung, auch im Falle von Überschwemmung.

24-stündiger Eintauchversuch

Das CGMCOSMOS-System besteht den Eintauchversuch mit einem Druck von 3 m Wassersäule während 24 Stunden bei Nennspannung und den Isolationsversuch bei Industriefrequenz.

Zu 100% stückgeprüft

Alle Schaltanlagen werden lückenlosen elektrischen und mechanischen Routineprüfungen gemäß den geltenden Richtlinien unterzogen. Außerdem wurden die Schaltanlagen Prüfungen zur Gasdichtheit unterzogen, um die Zuverlässigkeit während ihrer gesamten Lebensdauer zu gewährleisten.

- Gasdichtheitsprüfung
- Stehwechselspannungstest
- Messung des Widerstands des Hauptstromkreises
- Prüfung der mechanischen Festigkeit
- Messung der Teilentladung (optional)

Effizienz

Hochwertige Leistungsmerkmale machen Ihre Aufgabe einfacher.

Modulbauweise

Das **CGMCOSMOS** zeichnet sich durch seine vollständig modulare Bauweise aus. Es bietet flexible Darstellungskonfigurationen, einfache Erweiterung an beiden Seiten und minimalen Platzbedarf.

Zusätzlich kann diese Anlage an die Weiterentwicklungen des Netzwerks angepasst werden.

Erweiterbarkeit und Austauschbarkeit

Mit dem Anschlusssatz ORMALINK wird ein unkomplizierter mechanischer oder elektrischer Anschluss der zwei Schaltfelder ohne Gashandhabung ermöglicht und ist für zukünftige Erweiterungen geeignet.

Die austauschbaren Schaltantriebe und deren Motorisierung ohne Versorgungsunterbrechung verhelfen zu einer verbesserten Qualität der Stromversorgung.

Geeignet für Smart Grid

Das **CGMCOSMOS**-System wurde bereits in mehrere Smart Grid-Anwendungen integriert.

Ormazabal stellt komplette
Mittelspannungsanlagen
bereit, die Schutz-, Steuerungs-,
Automatisierungs- und erweiterte
Messmanagementfunktionen beinhalten
und den höchsten Anforderungen der
intelligenten Netze entsprechen.

Ergonomie

CGMCOSMOS weist die folgenden bedienerfreundlichen Merkmale auf:

- Frontseitiger Zugang für die Installation der Mittelspannungskabel und Sicherungen
- Leichter Anschluss und Prüfung der Kabel
- Optimale Schnittstelle mit Bedienpersonen
- Waagrechte Sicherungsträger
- Einfache Handhabung der Schaltantriebe
- Geringe Größe und leichtes Gewicht

Nachhaltigkeit

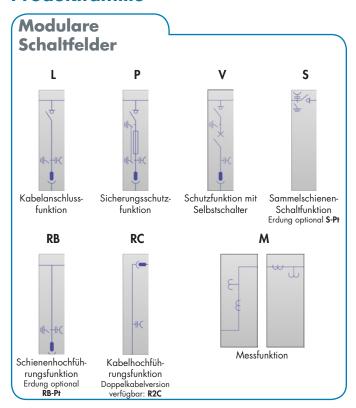
Kontinuierliche Maßnahmen zur Reduzierung der Gasemissionen Engagement für die Umwelt

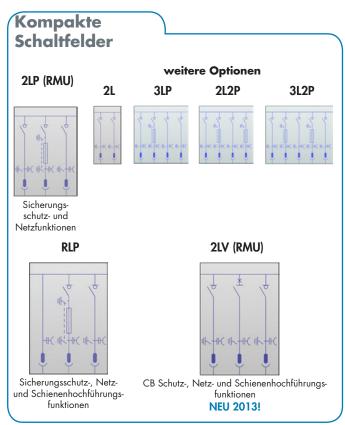
- Stetige Reduzierung von Treibhausgasen
- Vernachlässigbare SF_δ Emission beim Herstellungsprozess
- Verringerung der Gasaustrittsrate an Schaltanlagen
- Kein Einsatz von SF₆ Gas bei der Installation
- Permanente Maßnahmen zur Verringerung des ökologischen Fußabdrucks
- Rücknahme nach Ablauf der Betriebszeit
- Verwendung von recyclebaren Materialien
- Stetige Forschungsinvestitionen in alternative Materialien und eigene Technologien
- Bereitstellung von selbstgespeisten Relais und Geräten zur Vermeidung von weiterem Energieverbrauch

Kontinuierliche Innovation

Für eine unterbrechungsfreie Versorgung Ihres elektrischen Netzes Eine auf Innovation fokussierte Gruppe von Fachleuten führt konstant zu neuen Entwicklungen und Aktualisierungen wie z. B.:

- Module für den Einsatz bis zu -30°C
- Neue Messschaltfelder, gemäß IE62271-200-Norm getestet, einschließlich IAC-Anforderungen
- Entwicklung bei den Schaltantrieben
- Im Schaltfeld integrierte Schutzund Automatisierungseinheiten
- System geeignet für Smart Grid
- Spannungs- und Stromsensoren
- Vorbeugende Kabelstörungsdiagnose
- Teilentladungserkennung für Netzwerkdiagnose





Technische Details

Produktfamilie

Geltende elektrische Normen

IEC	
IEC 62271-1	Allgemeine Vorschriften für Hochspannungsschaltanlagen.
IEC 62271-200	Metallgekapselte Wechselstrom-Schaltanlagen für Bemessungsspannungen über 1 kV bis einschließlich 52 kV.
IEC 62271-103	Schalter für Bemessungsspannungen über 1 kV bis einschließlich 52 kV.
IEC 62271-102	Wechselstrom-Trennschalter und -Erdungsschalter.
IEC 62271-105	Hochspannungs-Wechselstrom Lastschalter-Sicherungskombinationen.
IEC 62271-100	Hochspannungs-Wechselstrom Leistungsschalter.
IEC 60255	Elektrische Relais.
IEC 60529	Schutzarten durch Gehäuse.
IEC 62271-206	Spannungsanzeigesysteme (VPIS).
IEC 61243-5	Spannungsprüfsystem
IEEE / ANSI	
IEEE C37.74	IEEE-Norm-Anforderungen für unterirdische Schaltanlagen und in Kellerräumen, Schaltanlagen mit Vorhängeschloss und Lastunterbrecher und Sicherungs-Lastunterbrecher für Wechselstrom-Systeme bis 38 kV.
IEEE C37.20.3	IEEE-Norm für metallgekapselte Unterbrecher-Schaltanlage
IEEE 1247	Norm für Unterbrecherschalter für Wechselstrom mit Bemessungsspannungen von über 1000 Volt
IEEE C37.123	IEEE Leitfaden für gasisolierte Stromtransformatoranlagen
IEEE Norm C37.20.4	IEEE Norm für AC-Innenraumschaltanlagen (1 kV-38 kV) für den Einsatz in metallgeschotteten Schaltanlagen
IEEE C37.04	IEEE Norm Leistungsstruktur für AC-Hochspannungs-Leistungsschalter
IEEE C37.06	AC Hochleistungs-Leistungsschalter auf symmetrischer Bemessungsstrombasis- bevorzugte Bemessungsgrößen und verknüpfte erforderliche Funktionen
IEEE Norm C37.09	IEEE Norm Prüfverfahren für AC-Hochspannungs-Leistungsschalter mit symmetrischem Bemessungsstrom
IEEE Norm C37.20.7	IEEE Leitfaden für metallgekapselte Mittelspannungs-Prüfschaltanlagen für Störlichtbogenfälle
(*): Sonstiges: SANS, HN, GB, SD	MS

Technische Daten

Elektrische Daten			IE	С	ANSI /	IEEE
Bemessungsspannung	U _d	[kV]	12	24	15,5	27
Bemessungsfrequenz	- f _r		50	/ 60	50 /	60
Bemessungs-Betriebsstrom	 _r					
Sammelschienen- und Schaltfeldanschluss		[A]	400	/ 630	60	00
Einspeisung Ausgang zum Transformator		[A] [A]	400 / 630 200		600 200	
Bemessungs-Kurzzeitstrom				_		
tk = 1 s - 3 s	- I _k	[kA]	16 / 2011 / 25	16 / 2011 / 252)	20)1)
Spitzenwert	I _p	[kA]	40 / 521) / 62.5	40 / 521) / 62.52)	52	21)
Bemessungs-Isolationspegel						
Bemessungs- Stehwechselspannung [1 min]	U _d	[kV]	28 / 32	50 / 60	35 /	[′] 60
Bemessungs-Stehblitzstossspannung	U _p	[kV]	75 / 85	125 / 145	95 /	125
Störlichtbogenklassifizierung nach IEC 62271-200	IAC			s / 20 ¹⁾ kA 1s 1s / 25 ²⁾ kA 1 s	AFL ³⁾ 20	¹⁾ kA 1s
Schutzart: Druckbehälter				IP67		
Schutzart: Äußeres Gehäuse				IP3X / IP4X		
Farbton der Ausstattung		RAL		Grau 7035 / Blau 3	5005	
Betriebsverfügbarkeit		LSC		LSC2		
Schottungsklasse				PM		

1) Versuchsdurchführung	bei: 21	kA/52,5 kA.
-------------------------	---------	-------------

²⁾ Verfügbarkeit erfragen

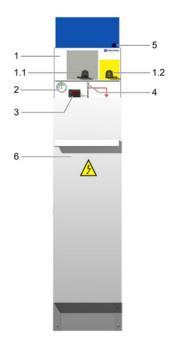
³⁾ Entspricht IEEE C37.20.7 für 1D-S

Schaltantrieb			Dre	istellun	ıgs-Las	ttrennschalter	\	/akuum-Leis	tungssch	alter
		В	ВМ	BR	AR	ARM	AV	AMV	RAV	RAMV
Hilfsstromkreise										
Innenisolierung	[kV]	2	2	10	10	2	2	2	2	2
Auslösespule	_									
Bemessungsspannung	[V]	n/a	a n/a 24 ¹¹ / 48 / 110 ¹¹ / 220 Vdc 110 110 / 230 Vdc 110			10 / 230 Vac				
max. Aufnahme	[W]	n/a	n/a		3	30		<	56	
Motorisierte Einheiten										
Bemessungsspannung	[V]	n/a	4)	n/a	n/a	48 Vdc / 230 Vac	n/a	3)	n/a	3)
max. Aufnahme	[A]	n/a	45)	n/a	n/a	4	n/a	10	n/a	10
Betriebszeit des Motors	[s]	n/a	<7	n/a	n/a	<7	n/a	<15	n/a	<15
Spitzenstrom	[A]	n/a	<126)	n/a	n/a	<12	n/a	<8	n/a	<8
Anzeigekontakt										
Schalter Erdung			2NO	+ 2NC	1NO +	1NC	2	NO+2NC 1N	O + 1NC	
Leistungstrennschalter				n	/a			9 NO	+ 9 NC	
Bemessungsspannung	[V]			2	50			2	50	
Nennstrom	[A]			1	6			1	16	

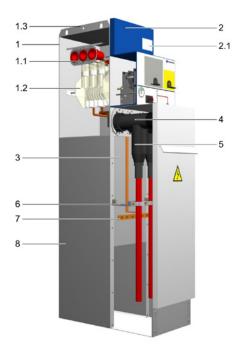
 $^{^{1)}}$ Für ARM Verfügbarkeit erfragen $^{2)}$ 24 / 48 / 110 / 230 Vdc 110 / 230 Vdc $^{3)}$ 24 / 48 / 60 / 110 / 230 Vdc 23 Vdc 23 Vdc 24 24 / 48 / 110 / 210 Vdc 51 10 A [24 Vdc] $^{6)}$ 21 A (24 Vdc)

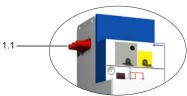
Betriebsbedingungen	IEC	ANSI / IEEE
Art der Schaltanlage	Innenb	ereich
Umgebungstemperatur		
Minimum Maximum	-40 °C * ±40 °C**	-40 °F * 104 °F **
Umgebungshöchsttemperatur im Durchschnitt, gemessen über einen 24-stündigen Zeitraum	+35 °C	95 °F
Mindesttemperatur Lagerung	-50 °C	-58 °F
Relative Luftfeuchtigkeit		
Maximale relative Luftfeuchte im Durchschnitt, gemessen über einen 24-stündigen Zeitraum	<95	5 %
Dampfdruck		
Maximaler mittlerer Dampfdruck, gemessen über einen Zeitraum von 24 Stunden 1 Monat	22 mbar	18 mbar
Maximale Höhe über dem Meeresspiegel	2,000 m**	6,500 feet**
Sonneneinstrahlung	zu vernac	hlässigen
Luftverunreinigung (Staub, Salzgehalt etc.)	Unbede	eutend
Schwingungen (seismische Aktivität)	zu vernach	lässigen**

^{*} Verfügbarkeit und weitere Werte erfragen. ** Informationen



 $^{^{\}star\star}$ Informationen über besondere Bedingungen und Höhen erhalten Sie bei ${\bf Ormazabal}$




Aufbau

Frontansicht

Seitenansicht

- 1 Übersichtsdarstellung und Schaltantriebsabdeckung:
- 1.1 Schalter Trennschalter (mit Vorhängeschloss)
- 1.2 Erdungsschalter (mit Vorhängeschloss)
- 2 Druckanzeige
- 3 Spannungsanzeige (ekorVPIS)
- 4 Schalter Trennschalter Anzeige
- 5 Akustischer Alarm (ekorSAS)
- 6 Kabelraumabdeckung

1 Druckbehälter

- 1.1 Schienenanschluss (seitlichen Durchführungen)
- 1.2 Schalter Trennschalter
- 1.3 Hebeösen
- 2 obere Abdeckung / Steuerfachaufstellung
- 2.1 Leistungsschild + Schaltfolge
- 3 Kabelraum
- 4 Durchführungen vorne
- 5 Stecker und Kabel
- 6 Kabelschelle
- 7 Erdungsschienen
- 8 Gasentlastungskanal

Weltweite Zertifizierung und Einsatz

Einsatzbeispiele

Weltweite Anwendung / Einsatz

- Öffentliche Verteilnetze:
 Städtische und ländliche Gebiete
- Smart Grids
- Erneuerbare Energien:
 On- und Off-shore-Windparks,
 Photovoltaikanlagen usw.
- Hotels, Sportstadien, Einkaufszentren
- Industrieanlagen
- Öl- und Gasindustrie
- Flughäfen, Häfen, Tunnel

CGMCOSMOS Typ ANSI / IEEE

Konstruktionsmerkmale

Schlüsselkomponenten

Ormalink Anschluss-Set

Vorreiter bei erweiterbaren Anschluss-Sets:

Das Anschluss-Set ORMALINK wurde 1991 von **Ormazabal** patentiert und ermöglicht den elektrischen Anschluss verschiedener Module des **CGMCOSMOS**-Systems. Dabei werden die Bemessungs-Isolierwerte sowie die Bemessungsströme und Kurzschlussströme beibehalten Es dient auch zur Steuerung der elektrischen Felder.

Erweiterbar an beiden Seiten des Schaltfelds.

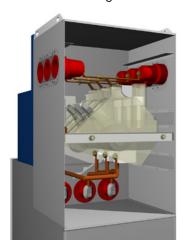
Die erweiterbaren Schaltfelder sind für die Verbindung zwischen den Hauptsammelschienen mit seitlichen Anschlussbuchsen ausgestattet.

ORMALINK Anschluss-Satz

Vorstellung von ORMALINK

Lasttrennschalter

Von **Ormazabal** konzipierte und entwickelte hochleistungsfähige Lasttrennschalter Puffer-Typ.


Der Schalter - Trennschalter verfügt über die Schalter-, Trennschalter- und Erdungsschalterfunktion in einer einzelnen Dreistellungseinheit.

Merkmale:

- 3-Stellungsschalter Trennschalter: Offen - geschlossen - Erdung
- Bedienerunabhängige Betätigung
- Schalterkategorie Mechanische Festigkeit:
 - 1000-M1 (manuell)
 - 5000-M2 (Motor)
 - Elektrische Festigkeitsklasse 5-E3
- Erdungsschalter Kategorie:

Mechanische Dauerfestigkeit

- 1000-M0 (manuell)
- Elektrische Festigkeitsklasse 5-E2

Vakuum-Leistungsschalter

Leistungsschalter mit Vakuum-Schaltertechnologie, kompakt und mit hervorragender Zuverlässigkeit, Zertifizierung gemäß IEC 62271-100 Norm, einschließlich erweiterter elektrischer Festigkeit (Klasse E2) mit schneller Wiedereinschaltung und somit wartungsfrei während der gesamten Lebensdauer.

Merkmale:

- Mechanische Dauerfestigkeit:
 - M2: 10000 Schaltvorgänge
 - M1: 2000 Schaltvorgänge
- Schaltfolge ohne Wiedereinschaltung
 - CO-15 s-CO
 - CO-3 min-CO
- Schaltfolge mit Wiedereinschaltung
 - O-0,3 s-CO-15 s-CO
 - O-0.3 s-CO-3 min-CO
- In Verbindung mit Schalter -Trennschalter

Haupträume

Das **CGMCOSMOS** zeichnet sich durch seinen Aufbau aus, der in unabhängige Bereiche unterteilt ist.

- 1. Druckbehälter
 - a) Sammelschienenanschluss
 - b) Schaltgeräte
- 2. Schaltantrieb
- 3. Unterkasten
 - a) Kabelbereich
 - b) Gasentlastungskanal
- 4. Steuerkasten

Druckbehälter

Der abgedichtete und SF₆ gasisolierte **Behälter** enthält die Sammelschiene und Schalt- und Trennelemente. Die verwendete dielektrische Flüssigkeit dient sowohl als Isolier- als auch Löschmedium. Der Behälter ist mit einer Membran ausgestattet, um im Fall eines Störlichtbogen den Gasaustritt sicher zu steuern, sowie mit einer Druckanzeige für die Druckkontrolle des Isoliergases.

Die Sammelschiene verbindet die einphasigen Buchsen von außen des Schaltfelds mit den Schaltelementen innen. Die elektrische Verbindung zwischen den verschiedenen Modulen des Systems CGMCOSMOS erfolgt über den ORMALINK Anschluss-Satz.

Die Schutzsicherungen werden waagrecht in phasenunabhängigen Schotträumen gehalten und mit einem Sicherungshalter installiert. Die Sicherungshalter verfügen über Isolation und sind gegen Verschmutzung, Temperaturänderungen und andere ungünstige Wetterbedingungen abgedichtet. Von innen wird die Bewegung des Schlagstifts zur Auslösemechanik übertragen.

Merkmale:

- Dauerhaft abgeschlossenes und isoliertes System (30 Jahre)
- Störlichtbogengeprüft
- Edelstahl IP67 Bemessung
- Roboterschweißung
- Schalter,- Trenn- und Hauptstromkreisgeräte:
- O Schalter Trennschalter
- Leistungsschalter
- Sicherungsträger
- Außenkonus-Buchse steckerartige Klemme
- Druckanzeige
- Überdruck-Membranventil
- Direkter Schienenanschluss über einphasige seitliche Durchführungen

Schaltantrieb

Der **Schaltantrieb** wird zur Durchführung von Ein- und Ausschaltvorgängen in Mittelspannungskreisläufen verwendet.

Die frontseitige Anordnung der Schaltmechanismen und der Einsatz von Antireflex-Hebeln erlaubt eine sichere, bequeme und einfache Ausführung der Schaltungen bei minimalem Kraftaufwand.

Die vorderen **Blindschaltbilder** beinhalten Vorrichtungen zur Stellungsanzeige. Ein Höchstmaß an Zuverlässigkeit wird durch die Verwendung des Tests der kinematischen Kette des Anzeigemechanismus gemäß IEC 62271-102 sichergestellt.

Merkmale:

- Blindschaltbilder und Tastenfelder
- Stellungsanzeige (kinematischen Kette)
- Schaltgeräte
- Sicherungsauslösung
- Kapazitive Spannungsanzeige (ekorVPIS / ekorIVDS)
- (elektrische und mechanische) Verriegelungen
- Motorisierung ohne Versorgungsunterbrechung
- Vor Ort austauschbar und motorisierbar

Typen der Schaltantriebe

Je nach Betätigungsmechanismus (Schalter mit drei Stellungen oder Leistungsschalter) gibt es verschiedene Modelle:

Schalter-Trennschalter mit drei Stellungen

- B und BM
- Basis-Schaltantrieb mit unabhängiger manueller Betätigung (B) oder motorisierter Betätigung (BM).
- Lokale Steuerung oder ferngesteuerte Vorgänge.
- Anwendbar bei Kabelanschluss- und Sammelschienenfunktionen.
- BR/AR und ARM
- Schaltantrieb mit manueller (BR/AR) oder motorisierter Betätigung (ARM) und mit Kippschalter.
- Anwendbar bei Sicherungsfeldfunktionen.
- Sie können in jeder der drei Stellungen (geschlossen - geöffnet - geerdet) unter Spannung ersetzt werden.

Leistungsschalter

- AV und AMV (ohne Wiedereinschaltung) / RAV und RAMV (Wiedereinschaltung)
- Federgespannter Schaltantrieb für Leistungsschalter-Funktion.
- Dieser Antrieb wird in Serien mit einem Antrieb des Typs B verbaut.
- Das Federset wird manuell (AV-RAV) oder motorisiert (AMV-RAMV) geladen.

Unterkasten Kabelschottraum

Der Kabelraum, der den Zugang zu den Mittelspannungskabeln von der Vorderseite aus erlaubt, befindet sich unten im Schaltfeld und verfügt über einen Deckel, der mit dem Erdungsschalter verbunden ist.

Die Anschlüsse der isolierten Mittelspannungskabel von außen erfolgen mittels

Kabeldurchführungen, die Einsteckbzw. Schraubverbindungen mit/ohne Potentialausgleichsabschirmungen zulassen.

Merkmale:

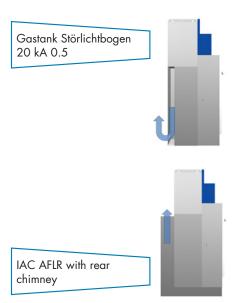
- Es sind bis zu zwei Stecker pro Phase erhältlich. Erfragen sie die Kompatibilität.
- weitere Kabelanschlussstecker oder Überspannungsableiter mit spezieller Abdeckung
- Mühelose Anschlüsse (Steck- bzw. Schraubverbindungen)
- Geeignete Durchführungshöhe für 3-adrige/große Kabel
- Außenkonus-Buchse mit steckerartiger Klemme
- Einfache Kabelerdung
- Kabelmessung
- Steckblendenverriegelung mit Erdungsschalter
- Schutzkanäle für Niederspannungskabel

Steuerkasten

Der **Steuerkasten** im unteren Bereich des Schaltfelds und unabhängig von den Mittelspannungsräumen ist für den Einbau von Schutzrelais sowie von Mess- und Steuergeräte bestimmt.

Merkmale:

- Vom Mittelspannungsbereich unabhängiger Raum
- Vorbereitet für die Installation von Schutzrelais, Steuer- und Messanlagen
- Entsprechend der Kundenanforderungen vormontiert und geprüft
- Standardmäßige und kompakte Bauweise für die Installation der Schutzrelais und Automatisierungseinheiten von Ormazabal
- Hohe Anpassungsfähigkeit der Schutzrelais und Steuer- und Messeinheiten anderer Hersteller sowie an Kundenanlagen
- Maßgeschneiderte Größe und Bauweise
- Als Option k\u00f6nnen koppelbare Steuerf\u00e4cher f\u00fcr die Aufstellung von Anzeigeelementen und den Antrieb der motorisierten Funktionen geliefert werden.


Gas tank internal arc 20 kA 1 s /IAC class AFL

Druckentlastungskanal

Der **Druckentlastungskanal** an der Rückseite der Basis leitet die durch den Störlichtbogen erzeugten Gase durch Membranventil ab.

Merkmale:

- Ausbreitung von Gasen im Störlichtbogenfall
- Hintere Ableitung von Abgasen
- Metalltrennung von den Kabelbereichen
- Optional: Kamin für den hinteren Störlichtbogenschutz

Messfeld

Referenzen

• Iberdrola Star-Projekt. Spanien

Gas Natural Fenosa-Projekt.

Endesa-Projekt. Spanien (Malaga)

(Castellón, Bilbao...)

Spanien (Madrid)

Smart Grids

Das Ziel der intelligenten Netze oder Smart Grids ist die effizientere, saubere und sichere Elektrizitätserzeugung und -verteilung

Die Wertkette der Smart Grids führt die Sektoren der elektrischen Energie, Telekommunikation und Informationsund Kommunikationstechnologie zusammen.

Ormazabal kollaboriert in innovativen Projekten und liefert als Treiber und Lösungen und Produkte mit Fokus auf die Optimierung der Effizienz der Energieverteilung in einer ständig wechselnden Umgebung und gilt als treibender dynamischer Faktor für Smart Grids.

Die **Ormazabal**-Technologie wurde speziell für die intelligenten Netze entwickelt und bietet unter anderen folgende Vorteile:

- 1. Netzeinbindung neuer Benutzer
- 2. Förderung der Effizienz von Arbeitsabläufen am Netz
- 3. Verbesserte Sicherheit für Netz, Steuerung und Versorgungsqualität
- Optimierung des Investitionsplans für die Verbesserung des elektrischen Netzes
- Optimierung der Abläufe auf dem Markt und der Kundenbetreuung
- Förderung der Kundenbeteiligung im Energiemanagement

ekorGID AUTOMATION: Remote control - Automations - Web server - Maintenance (fault detection, - V, I, P, Q, alarms...)

Schutz und Automatisierung

ekorSYS Produktfamilie

Ormazabal liefert komplette Mittelspannungsanlagen, die Schutz-, Steuerungs- und Automatisierungsfunktionen integrieren.

Ormazabal verfügt über ein breites Angebot von Anwendungen und Leistungen, um alle Anforderungen der Verteilungsnetze abzudecken.

Schutzart

- Stromversorgung der Kunden im Mittelspannungsbereich
- ekorRPG $3 \times 50 / 51 + 50N / 51N + 50Ns /$ 51Ns

Leistungen zum Schutz mit Leistungsschaltern

Netz Spannung	Minimal- Leistung	Maximal- Leistung		
[kV]	[kVA]	[kVA]		
6,6	50	5000		
10	100	7500		
12	100	10000		
13,2	100	10000		
15	100	12000		
20	160	15000		

ekorRPT $3 \times 50 / 51 + 50N / 51N + 50Ns /$ 51Ns

Leistungen zum Schutz mit Sicherungen und ekorRPG Minimal-

Maximal-

2000

125

	Siche-	Leistur	ng	Leistung		
Netz Span- nung	rungs- Bemes- sungs- Span- nung	Sicherungs- Nennstrom		Siche- rungs- Nennstrom		
 [kV]	[kV]	[A]	[kVA]	[A]	[kVA]	
6,6	3 / 7.2	16	50	160*	1250	
10	6/12	16	100	160*	1250	
12	10 / 24	16	100	100	1250	
13,2	10 / 24	16	100	100	1250	
15	10 / 24	16	125	125**	1600	

160

* 442-mm-Patrone ** SIBA SSK 125 A Sicherung

16

20 10 / 24

- Schutz von Schaltstationen und industriellen Kunden
- ekorRPS $3 \times 50 / 51 + 50N / 51N + 50Ns$ / 51Ns+67+49+81+27+59N...+ Steuerungstechnik
- ekorRPGci $3 \times 50 / 51 + 50N / 51N + 50Ns /$ 51Ns + integrierte Steuerungstechnik
- ekorRPTci 3 x 50 / 51 + 50N / 51N + 50Ns / 51Ns + integrierte Steuerungstechnik
- Schutz f
 ür Transformatorstationen in ländlichen Gebieten (CTR)
- ekorRPT-K $3 \times 50 / 51 + 50N / 51N + 49T +$ integrierte Steuerungstechnik
- Generatoraggregat-Schutzsystem
- ekorUPG
- Stationsschutz
- ekorRPS-TCP: 3 x 50 / 51 + 50N / 51N + 50Ns / 51Ns +67+49+81+27+59N+50BF... + Steuerungstechnik

Automatisierung und Fernsteuerung

- Fernsteuerung
- ekorUCT
- ekorCCP
- ekorRCI
- CGMCOSMOS-2LPT
- Automatische Umschaltung
- ekorSTP
- ekorCCP
- ekorRTK
- Fehlererkennung
- ekorRCI
- Spannungsmelder mit akustischem Alarm
- ekorSAS
- Zweitschaltungspunkte

Erweitertes Zählermanagement und Kommunikation

ekorGID

Leitzentrale

Software

ekorSOFT

Für weitere Informationen wenden Sie sich bitte an Ormazabal oder besuchen Sie unsere Website www.ormazabal.es

Modultypen

CGMCOSMOS-L

Kabelanschlussfunktion

Modularer Kabelanschluss mit einem Schalter-Trennschalter mit drei Stellungen: geschlossen, offen und geerdet.

Erweiterbar: rechts, links und auf beiden Seiten.

		II.	ANSI / IEEE				
Ur	[kV]	12*	24	15,5	27		
	[Hz]	50) / 60	50 /	60		
l _r	[A]	400) / 630	60	0		
- I _r	[A]	400 / 630	400 / 630	60	0		
U _d	[kV]	28	50	35	60		
Ud	[kV]	32	60	38,5	66		
U _p	[kV]	75	125	95	125		
U _p	[kV]	85	145	104,5	137,		
l,	AC			AFL 20**	kA 1 s		
	[kV]		n.a.	53	78		
	II	C 62271-103	+ IEC 62271-102	IEEE C37	7.74		
I _k	[kA]	16 / 20** / 25#	16 / 20** / 25##	20*	*		
I _p	[kA]	40 / 52** / 62,5 [#]	40 / 52** / 62,5##	52**			
I ₁	[A]	400 / 630		600		600	
I _{4a}	[A]	50 / 1,5		15			
I _{2a}	[A]	400) / 630	60	0		
I _{6a}	[A]		300	n/o	a		
I _{6b}	[A]		100	n/a			
I _{ma}	[kA]	40 / 52** / 62,5 [#]	40 / 52** / 62,5##	52*	*		
			5-E3	3			
		IEC 622	271-102	IEEE C37	7.74		
l _k	[kA]	16 / 20** / 25#	16 / 20** / 25##	20*	*		
I _p	[kA]	40 / 52** / 62,5 [#]	40 / 52** / 25##	52**			
I _{ma}	[kA]	40 / 52** / 62,5 [#]	40 / 52** / 62,5##	52*	*		
		10	00-M0	100	00		
	Ir Ir Ir Ir Ir Ir Ir Ir	Ir	Ur [kV] 12* fr [Hz] 50 Ir [A] 400 / 630 Ud [kV] 28 Ud [kV] 32 Up [kV] 75 Up [kV] 85 IAC AFL 16 kA 1 AFL[R] 20** k [kV] IEC 62271-103 Ik [kA] 16 / 20** / 25* Ip [kA] 400 / 52** / 62,5* Ina [A] 400 Ima [A] 40 / 52** / 62,5* Ima [kA] 16 / 20** / 25* Ima [kA] 40 / 52** / 62,5* Ima [kA] 40 / 52** / 62,5*	Indicate Indicate	U ₁		

Anwendungen

Eingang oder Ausgang der Mittelspannungskabel, die die Kommunikation mit der Hauptsammelschiene der transformatorstation ermöglichen.

^{*} Auf Anfrage auch mit U.= 7,2 kV verfügbar. ** Versuchsdurchführung bei: 21 kA/52,5 kA. # Wert nur gültig für tı = 1 s ## Verfügbarkeit erfragen

Konfiguration

Schaltfeld

- Störlichtbogen IAC AFLR□ 20 kA 1s □ 25 kA 1 s*
- Störlichtbogen AFL□ 16 kA 1s □ 20 kA 1 s
- Störlichtbogen AF
 □ 16 kA 0.5 s □ 20 kA 0.5 s
 □ 16 kA 1 s □ 20 kA 1 s
- 1740 mm Höhe des Schaltfelds
- □ 1300 mm Höhe des Schaltfelds
- (#) Verfügbarkeit erfragen

Druckbehälter

Behälter aus Edelstahl

Gasdruckanzeige:

Druckanzeige

Vorderer Anschluss:

Kabeldurchführung

Seitlicher Anschluss:

- beidseitig erweiterbar
- links erweiterbar / rechts blind
- rechts erweiterbar / links blind

Art des seitlichen Anschlusses:

- □ Buchse
 - □ rechts □ links beide
- □ Konusbuchse
 □
 - □ rechts □ links □ beide

Schaltantrieb

- Betätigungshebel
- Manueller Mechanismus Typ B
- Motorisierter MechanismusTyp BM
- Akustischer Alarm ekorSAS
- Kapazitive Spannungsanzeige ekorVPIS
- Kapazitive Anzeige für anliegende/nicht anliegende Spannung ekorIVDS
- Sonstige kapazitiveSpannungsanzeigen
- Integrierte Steuer- und Überwachungseinheit ekorRCI
- Spannungsanzeigeeinheit ekorRTK

Zusätzliche Verriegelungen:

- Elektrische Verriegelungen
- Schlüsselverriegelung
- Vorhängeschloss

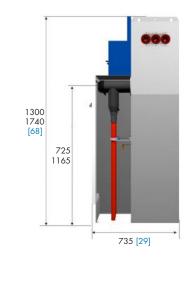
Kabelschottraum

- Schrauben Typ IEC-Durchführung
- Schrauben Typ ANSI-Durchführung
- Abdeckung für einen Kabelanschlussstecker pro Phase
- Erweiterte
 Kabelbereichabdeckung für doppelten Kabelanschluss
- Erweiterte
 Kabelbereichabdeckung für einfachen Kabelanschluss plus Überspannungsableiter
- Teilentladungserkennung für Netzwerkdiagnose

Druckentlastungskanal

Steuerkasten

- weitere Spannungsanzeigen
- weitere Schutzrelais
- weitere Mess- und Automatisierungskomponenten


Abmessungen

90 / 100 kg 220 Lbm

CGMCOSMOS-P

Sicherungsschutzfunktion

Modulares Sicherungsfeld mit einem Schalter-Trennschalter mit drei Stellungen: geschlossen, getrennt und geerdet und Schutz mit Begrenzungssicherungen.

Erweiterbar: rechts, links und auf beiden Seiten.

Elektrische Daten			IE	С	ANSI / IEEE	
Bemessungsspannung	Ur	[kV]	12*	24	15,5	27
Bemessungsfrequenz		[Hz]	50	/ 60	50 ,	/ 60
Nennstrom						
Hauptsammelschienen- und Schaltfeldanschluss	I _r	[A]	400	/ 630	6	00
Ausgang zum Transformator	l _r	[A]	2	200	20	00
Bemessungs- Kurzzeit- Stehwechselspannung (1 min)						
zwischen Phase und Erde (Erdung) und zwischen Phasen	U₄	[kV]	28	50	35	60
über Trennungsstrecke	U _d	[kV]	32	60	38,5	66
Bemessungs-Stehblitzstossspannung						
zwischen Phase und Erde (Erdung) und zwischen Phasen	U _P	[kV]	75	125	95	125
über Trennungsstrecke	U _P	[kV]	85	145	104,5	137,
Störlichtbogenklassifizierung		4C		s / 20** kA 1s A 1s / 25## kA 1 s	AFL 20*	* KA 1 s
DC Sannungsfestigkeit		[kV]	1	n/a	53	78
Schalter - Trennschalter		IE	C 62271-103 +	IEC 62271-102	IEEE C3	7.74
Bemessungs-Kurzzeitstrom (Hauptstromkreis)						
Wert $t_k = 1$ s oder 3 s	l _k	[kA]		16 / 20** / 25##	20)**
Spitzenwert	l _P	[kA]	40 / 52** / 62,5 [#]	40 / 52** / 62,5##	52)** -
Netzlast-Ausschaltstrom	I ₁	[A]		200	20	00
Hauptschalter Einschaltvermögen (Spitzenwert)	Ima	[kA]	40 / 52** / 62,5 [#]	40 / 52** / 62,5##	52)**
Schalterkategorie						
Mechanische Dauerfestigkeit				1 (manuell) notorbetrieben)	1000 (man (motorb	uell) / 500 etrieben)
Schaltzyklen (Kurzschlusseinschaltstrom) Klasse				5-E3	;	3
Kombiniertes Schaltrelais (ekorRPT) Übernahmestrom						
Ausschaltung I _{max} gemäß TD _{ito} IEC 62271-105		[A]	1700	1300	n/a	n/a
Schalter-Sicherung-Kombination Übergangsstrom						
Ausschaltung I _{max} gemäß TD _{itransfer} IEC 62271-105		[A]	2300	1600	n/a	n/a
Erdungsschalter			IEC 622	71-102	IEEE C3	7.74
Bemessungs-Kurzzeitstrom (Erdungsschaltkreis)						
Wert $t_k = 1$ s oder 3 s	Ik	[kA]	1	/ 3	1,	/ 3
Spitzenwert	I _P	[kA]	2,5	/ 7,5	2,5	/ 7,5
Erdungsschalter Einschaltvermögen (Spitzenwert)	I _{ma}	[kA]	2,5	/ 7,5	2,5	/ 7,5
Erdungsschalter Kategorie						
Mechanische Dauerfestigkeit (manuell)			100	00-M0	10	000
Schaltzyklen (Kurzschlusseinschaltstrom) Klasse				5-E2		3

Anwendungen

Allgemeiner Schutz und Transformatorenschutz sowie Ein- und Ausschaltabläufe

^{*} Auf Anfrage auch mit U.= 7,2 kV verfügbar. ** Versuchsdurchführung bei: 21 kA/52,5 kA. # Wert nur gültig für tk = 1 s ## Verfügbarkeit erfragen

Konfiguration

Schaltfeld

- Störlichtbogen IAC AFLR20 kA 1s □ 25 kA 1 s*
- ☐ Störlichtbogen AFL☐ 16 kA 1s ☐ 20 kA 1 s
- Störlichtbogen AF□ 16 kA 0.5 s □ 20 kA 0.5 s
- □ 16 kA 1 s □ 20 kA 1 s
 1740 mm Höhe des Schaltfelds
- □ 1300 mm Höhe des Schaltfelds
- (#) Verfügbarkeit erfragen

Druckbehälter

Behälter aus Edelstahl

Gasdruckanzeige:

Druckanzeige

Vorderer Anschluss:

Kabeldurchführung

Seitliche Verbindung:

- beidseitig erweiterbar
- ☐ links erweiterbar / rechts blind
- rechts erweiterbar / links blind

Art des seitlichen Anschlusses:

- □ Buchse
 - □ rechts □ links beide
- Konusbuchse
 - □ rechts □ links □ beide

Sicherungsauslösung:

- über Kombisicherungen
- □ über verknüpfte Sicherungen

Sicherungshalter:

- 24 kV
- □ 12 kV

Schaltantrieb

- Betätigungshebel
- Manueller Mechanismus Typ BR
- Manueller Mechanismus Typ AR
- Motorisierter Mechanismus Typ ARM
- Auslösespule
- Akustischer Alarm ekorSAS
- Kapazitive Spannungsanzeige ekorVPIS

- Kapazitive Anzeige für anliegende/nicht anliegende Spannung ekorIVDS
- Sonstige kapazitiveSpannungsanzeigen
- Transformatorschutzeinheit ekorRPT
- Spannungsanzeigeeinheit ekorRTK

Zusätzliche Verriegelungen:

- □ Elektrische Verriegelungen
- ☐ Schlüsselverriegelung
- Vorhängeschloss

Kabelschottraum

- Steckverbinder Typ IEC-Durchführung
- Schrauben Typ IEC-Durchführung
- Schrauben Typ ANSI-Durchführung
- Abdeckung für einen Kabelanschlussstecker pro Phase
- Erweiterte
 Kabelbereichabdeckung für doppelten Kabelanschluss
- Erweiterte
 Kabelbereichabdeckung für einfachen Kabelanschluss plus Überspannungsableiter
- Teilentladungserkennung für Netzwerkdiagnose

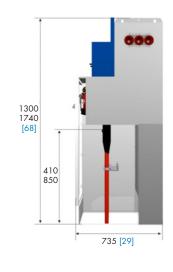
Druckentlastungskanal


Kamin hinten

Steuerkasten

- weitere Spannungsanzeigen
- weitere Schutzrelais
- weitere Mess- und Automatisierungskomponenten

Abmessungen



ANSI / IEEE

140 / 150 kg 331 Lbm

CGMCOSMOS-V

Schutzfunktion mit Selbstschalter

Modulfähiges Schaltfelder mit Leistungsschalter mit Vakuum-Leistungsschalter, der mit dem Schalter-Trennschalter mit drei Stellungen in Reihe geschaltet ist.

Erweiterbar: rechts, links und auf beiden Seiten.

Elektrische Daten			IEC	ANSI / IEEE
Bemessungsspannung	Ur	[kV]	24	27
Bemessungsfrequenz	fr	[Hz]	50 / 60	50 / 60
Nennstrom				
Hauptsammelschienen- und Schaltfeldanschluss	l _r	[A]	400 / 630	600
Einspeisung		[A]	400 / 630	600
Bemessungs- Kurzzeit- Stehwechselspannung (1 min)				
zwischen Phase und Erde (Erdung) und zwischen Phasen	U₄	[kV]	50	60
über Trennungsstrecke	U _d	[kV]	60	66
Bemessungs-Stehblitzstossspannung				
zwischen Phase und Erde (Erdung) und zwischen Phasen	U _p	[kV]	125	125
über Trennungsstrecke			145	137,5
Störlichtbogenklassifizierung		AC	AFL 16 kA 1 s / 20** kA 1s AFL[R] 20** kA 1s / 25## kA 1 s	AFL 20* kA 1 s
DC Sannungsfestigkeit		[kV]	n/a	53 78
Leistungsschalter			IEC 62271-100	IEEEC37.20.3
Bemessungs-Kurzzeitstrom (Hauptstromkreis)				
Wert $t_k = 1$ s oder 3 s	l _k	[kA]	16 / 20* / 25# kA 1 s	20**
Spitzenwert		[kA]	40 / 52* / 62.5#	52**
Bemessungs-Ausschalt- und Einschaltvermögen	·r	1 1	, , , , , , , , , , , , , , , , , , , ,	
Bemessungs-Trennkraft der hauptsächlich aktiven Stromstärke	I1	[A]	400 / 630	600
Trennkraft bei Kurzschluss	I _{sc}	[kA]	16 / 20* / 25# kA 1 s	20
Hauptschalter Einschaltvermögen (Spitzenwert)	Ima	[kA]	40 / 50* / 62.5#	32
kapazitive Ströme (50 Hz). Kondensatorbatterien		[A]	400	n.a.
Bemessungs-Schaltablauf		L 1	.00	11100
			CO-15 s-CO	CO-15 s-CO
Ohne Wiedereinschaltung			CO-3 min-CO	CO-3 min-CO
Mit Wiedereinschaltung			O-0,3 s-CO-15 s-CO O-0,3 s-CO-3 min-CO	O-0,3 s-CO-15 s-CO O-0,3 s-CO-3 min-CO
Selbstschalterklasse				
AA-ahaniaha Eastinlait (Sahaltunan Vlassa)			10000 - M2	10000 - M2
Mechanische Festigkeit (Schaltungen - Klasse)			2000 - M1	2000 - M1
Elektrische Festigkeit (Klasse)			E2-C2	E2-C2
Schalter - Trennschalter		ı	EC 62271-103 + IEC 62271-10	2 IEEE C37.74
Bemessungs-Kurzzeitstrom (Hauptstromkreis)				
Wert $t_k = 1$ s oder 3 s	l _k	_[kA]_	16 / 20* / 25#	20*
Spitzenwert	I _p	[kA]	40 / 50* / 62.5#	52*
Bemessungs-Trennkraft der hauptsächlich aktiven Stromstärke	I ₁	[A]	400 / 630	600
Hauptschalter Einschaltvermögen (Spitzenwert)	Ima	[kA]	40 / 52* / 62.5#	52
Schalter - Trennschalter Kategorie				
Mechanische Dauerfestigkeit			1000-M1 (manuell) / 5000-M2 (motorbetrieben)	1000 (manuell) / 5000 (motorbetrieben)
Schaltzyklen (Kurzschlusseinschaltstrom) Klasse			5-E3	3
Erdungsschalter			IEC 62271-102	IEEE C37.74
Bemessungs-Kurzzeitstrom (Erdungsschaltkreis)				
Wert $t_k = 1$ s oder 3 s	I _k	[kA]	16 / 20* / 25#	20*
Spitzenwert		[kA]	40 / 50* / 62.5#	52*
Hauptschalter Einschaltvermögen (Spitzenwert)	I _{ma}	[kA]	40 / 50* / 62.5#	20*
Erdungsschalter Kategorie				
Mechanische Dauerfestigkeit			2000-M1	2000
				3
Schaltzyklen (Kurzschlusseinschaltstrom) Klasse			5-E2	J

Anwendungen

18

Allgemeiner Schutz und Transformatorenschutz, Netzanschluss, Kondensatorbatterie, usw. sowie Ein- und Ausschaltabläufe

Konfiguration

Schaltfeld

- Störlichtbogen IAC AFLR20 kA 1s □ 25 kA 1 s*
- ☐ Störlichtbogen AFL ☐ 16 kA 1 s ☐ 20 kA 1s
- Störlichtbogen AF
 16 kA 0.5 s □ 20 kA 0.5 s
 16 kA 1 s □ 20 kA 1 s
- 1740 mm Höhe des Schaltfelds
- (#) Verfügbarkeit erfragen

Druckbehälter

Behälter aus Edelstahl

Gasdruckanzeige:

Druckanzeige

Vorderer Anschluss:

Kabeldurchführung

Seitlicher Anschluss:

- beidseitig erweiterbar
- ☐ links erweiterbar / rechts blind
- rechts erweiterbar / links blind

Art des seitlichen Anschlusses:

- Buchse
 - □ rechts □ links beide
- - □ rechts □ links □ beide

Schaltantrieb

- Betätigungshebel
- Schaltantrieb Typ B
- Motorisierter Antrieb Typ BM
- Manueller Antrieb Typ AV
- Manueller Antrieb mit
 Wiedereinschaltung Typ RAV
- Motorisierter Antrieb Typ AVM
- Motorisierter Antrieb für Wiedereinschaltung Typ RAVM
- Auslösespule
- Flipflop-Spule
- 2. Auslösespule
- Schließspule

- Unterspannungsspule
- Akustischer Alarm ekorSAS
- Kapazitive Spannungsanzeige ekorVPIS
- Kapazitive Anzeige für anliegende/nicht anliegende Spannung ekorIVDS
- Schutzeinheit ekorRPG
- Spannungsanzeigeeinheit ekorRTK

Zusätzliche Verriegelungen:

- □ Elektrische Verriegelungen
- □ Schlüsselverriegelung
- □ Vorhängeschloss

Kabelschottraum

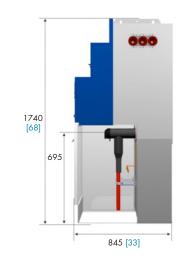
- Schrauben Typ IEC-Durchführung
- Steckverbinder Typ IEC-Durchführung
- Schrauben Typ ANSI-Durchführung
- Abdeckung für einen Kabelanschlussstecker pro Phase
- Erweiterte
 Kabelbereichabdeckung für doppelten Kabelanschluss
- Erweiterte
 Kabelbereichabdeckung für einfachen Kabelanschluss plus Überspannungsableiter
- Teilentladungserkennung für Netzwerkdiagnose

Druckentlastungskanal

Steuerkasten

- weitere Spannungsanzeigen
- weitere Schutzrelais
- weitere Mess- und Automatisierungskomponenten

Abmessungen



IEC

240 kg 529 Lbm

CGMCOSMOS-S

Sammelschienen-Schaltfunktion

Modulfähiges Schaltfeld mit Sammelschienen-Schaltfunktion mit Schalter-Trennschalter mit zwei Stellungen (ein und getrennt) optionalem Erdungsschalter (S-Pt).

beidseitig erweiterbar.

Elektrische Daten				EC	ANSI	/ IEEE
Bemessungsspannung	Ur	[kV]	12*	24	15,5	27
Bemessungsfrequenz	fr	[Hz]	50 /	60	50	/ 60
Nennstrom						
Hauptsammelschienen- und Schaltfeldanschluss	I _r	[A]	400 /	630	6	00
Einspeisung		[A]	400 /	630	6	00
Bemessungs- Kurzzeit- Stehwechselspannung (1 min)						
zwischen Phase und Erde und zwischen Phasen	U _d	[kV]	28	50	35	60
über Trennungsstrecke	U _d	[kV]	32	60	38,5	66
Bemessungs-Stehblitzstossspannung						
zwischen Phase und Erde und zwischen Phasen	U _p	[kV]	75	125	95	125
über Trennungsstrecke	U _p	[kV]	85	145	104,5	137,5
Störlichtbogenklassifizierung	- I	AC	AFL 16 kA 1 s / AFL[R] 20** kA 1		AFL 20	** kA 1s
DC Sannungsfestigkeit		[kV]	n.a		53	78
Schalter - Trennschalter			IEC 62271-103 +	IEC 62271-102	2 IEEE (C37.74
Bemessungs-Kurzzeitstrom (Hauptstromkreis)						
Wert $t_k = 1$ s oder 3 s	I _k	[kA]	16 / 20** / 25#	16 / 20** / 25#	20)**
Spitzenwert		[kA]	40 / 52** / 62,5# 4	10 / 52** / 62,5#	52)**
Netzlast-Ausschaltstrom	I ₁	[A]	400 /	630	6	00
Kabelausschaltstrom	I _{4a}	[A]	50 /	1.5	15	
Bemessungs-Ausschaltvermögen geschlossene Schleife	I _{2a}	[A]	400 /	630	600	
Erdschlussausschaltstrom	I _{6a}	[A]	300)	n	.a.
Kabel- und Freileitungsauschaltstrom unter Erdschlussbedingungen	I _{6b}	[A]	100)	n	.a.
Hauptschalter Einschaltvermögen (Spitzenwert)	I _{ma}	[kA]	40 / 52** / 62,5# 4	10 / 52** / 62,5#	52)**
Schalterkategorie						
Mechanische Dauerfestigkeit			1000-M1 / 500	0-M2 (Motor)	1000 (manuell)	/ 5000 (Moto
Schaltzyklen (Kurzschlusseinschaltstrom) Klasse			5-E3	3		3
Erdungsschalter [Optional]			IEC 62:	271-102	IEEE (C37.74
Bemessungs-Kurzzeitstrom (Erdungsschaltkreis)						
Wert $t_k = 1$ s oder 3 s	I _k	[kA]	16 / 20** / 25#	16 / 20** / 25#	20)**
Spitzenwert	- I _p	[kA]	40 / 52** / 62,5# 4	10 / 52** / 62,5#	52)**
Erdungsschalter Einschaltvermögen (Spitzenwert)	Ima	[kA]	40 / 52** / 62,5# 4	10 / 52** / 62,5#	52)**
Erdungsschalter Kategorie						
Erdungsschalter Kategorie Mechanische Dauerfestigkeit (manuell)			1000-	MO	10	000

^{**} Versuchsdurchführung bei: # Wert nur gültig für t_k = 1 s ## Verfügbarkeit erfragen

Anwendungen

Unterbrechung der Last der Hauptsammelschiene der Transformatorstation und der Erdung rechts (Ptd) oder links (Pti) des Schalterpunkts.

Konfiguration

Schaltfeld

- Störlichtbogen IAC AFLR20 kA 1s □ 25 kA 1 s*
- Störlichtbogen AFL□ 16 kA 1 s □ 20 kA 1s
- Störlichtbogen AF
 16 kA 0.5 s □ 20 kA 0.5 s
 16 kA 1 s □ 20 kA 1 s
- 1740 mm Höhe des Schaltfelds
- (*) Verfügbarkeit erfragen

Gastank

Behälter aus Edelstahl

Gasdruckanzeige:

Druckanzeige

Seitlicher Anschluss:

beidseitig erweiterbar

Art des seitlichen Anschlusses:

- □ Buchse□ rechts □ links beide
- ☐ Konusbuchse☐ rechts ☐ links ☐ beide

Erdung:

- Mit Erdungsschalter links.Typ S-Pti
- ☐ Mit Erdungsschalter rechts S-Ptd

Schaltantrieb

- Betätigungshebel
- Manueller Mechanismus Typ B
- Motorisierter Mechanismus Typ BM
- Akustischer Alarm ekorSAS
- Kapazitive Spannungsanzeige ekorVPIS (mit Erdung)
- Kapazitive Anzeige für anliegende/nicht anliegende Spannung ekorIVDS (mit Erdung)
- Sonstige kapazitiveSpannungsanzeigen
- Integrierte Steuer- und Überwachungseinheit ekorRCI
- Spannungsanzeigeeinheit ekorRTK

Zusätzliche Verriegelungen:

- Elektrische Verriegelungen
- Schlüsselverriegelung
- □ Vorhängeschloss

Kabelschottraum

Teilentladungserkennung für Netzwerkdiagnose

Druckentlastungskanal

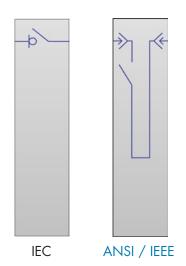
Kamin hinten

Steuerkasten

- □ weitere Relais
- weitere Mess- und
 Automatisierungskomponenten

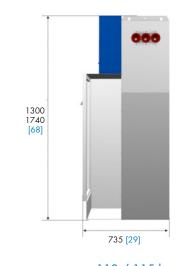
Optionen

CGMCOSMOS-S-Pt



IEC

ANSI / IEEE


Abmessungen

[18]

110 / 115 kg 253 Lbm

CGMCOSMOS-RB

Schienenhochführungsfunktion

Modulfähiges gasisoliertes Schaltfeld mit Schienenhochführung. Optionaler Erdungsschalter (RB-Pt).

Erweiterbar: rechts und auf beiden Seiten.

Elektrische Daten				IEC	ANSI	/ IEEE
Bemessungsspannung	Ur	[kV]	12*	24	15,5	27
Bemessungsfrequenz		[Hz]	50 ,	/ 60	50 /	60
Nennstrom						
Hauptsammelschienen- und Schaltfeldanschluss	l _r	[A]	400 ,	/ 630	60	0
Einspeisung	l _r	[A]	400 ,	/ 630	60	0
Bemessungs- Kurzzeit- Stehwechselspannung (1 min)						
zwischen Phase und Erde und zwischen Phasen	U₄	[kV]	28	50	35	60
Bemessungs-Stehblitzstossspannung						
zwischen Phase und Erde und zwischen Phasen	U_p	[kV]	75	125	95	125
Störlichtbogenklassifizierung	I	AC		/ 20** kA ls ls / 25## kA l s	AFL 20*	* kA 1s
Erdungsschalter [Optional]			IEC 62	2271-102	IEEE C	37.74
Bemessungs-Kurzzeitstrom (Hauptstromkreis)						
Wert $t_k = 1$ s	I _k	[kA]	16 / 20** / 25	16 / 20** / 25	20	* *
Spitzenwert	I _P	[kA]	40 / 52** / 62,5	40 / 52** / 62,5	52	* *
Erdungsschalter Einschaltvermögen (Spitzenwert)	I _{ma}	[kA]	40 / 52** / 62,5	40 / 52** / 62,5	52	**
Erdungsschalter Kategorie						
Mechanische Dauerfestigkeit			1000	O-M0	100	00
Schaltzyklen (Kurzschlusseinschaltstrom) Klasse			5-	E2	3	
* Auf Anfrago auch mit II = 7.2 kV vorfügbar			-			

^{*} Auf Anfrage auch mit U_r= 7,2 kV verfügbar. ** Versuchsdurchführung bei: 21 kA/52,5 kA.

Anwendungen

Eingang oder Ausgang der Mittelspannungskabel, die die Kommunikation mit der Sammelschiene der Transformatorstation rechts (RBd) oder auf beiden Seiten (RBa) ermöglichen.

^{##} Verfügbarkeit erfragen

Konfiguration

Schaltfeld

- Störlichtbogen IAC AFLR20 kA 1s □ 25 kA 1 s*
- ☐ Störlichtbogen AFL ☐ 16 kA 1 s ☐ 20 kA 1s
- Störlichtbogen AF
 16 kA 0.5 s □ 20 kA 0.5 s
 16 kA 1 s □ 20 kA 1 s
- 1740 mm Höhe des Schaltfelds
- □ 1300 mm Höhe des Schaltfelds
- (*) Verfügbarkeit erfragen

Gastank

Behälter aus Edelstahl

Gasdruckanzeige:

Druckanzeige

Vorderer Anschluss:

Kabeldurchführung

Seitlicher Anschluss:

- beidseitig erweiterbar: RBa
- rechts erweiterbar / links blind:

Art des seitlichen Anschlusses:

- □ Buchse
 - □ rechts □ links beide
- Konusbuchse
 - □ rechts □ links □ beide

Erdung:

- Mit Erdungsschalter links
- Mit Erdungsschalter rechts

Schaltantrieb

- Manueller Mechanismus Typ B
- Motorisierter Mechanismus Typ
 BM
- □ Akustischer Alarm ekorSAS
- Kapazitive Spannungsanzeige ekorVPIS (mit Erdung)
- Kapazitive Anzeige für anliegende/nicht anliegende Spannung ekorIVDS (mit Erdung)

- Sonstige kapazitiveSpannungsanzeigen
- Integrierte Steuer- und Überwachungseinheit ekorRCI
- Spannungsanzeigeeinheit ekorRTK

Zusätzliche Verriegelungen:

- □ Elektrische Verriegelungen
- ☐ Schlüsselverriegelung
- Vorhängeschloss

Kabelschottraum

- Abdeckung für einen Kabelanschlussstecker pro Phase
- Teilentladungserkennung für Netzwerkdiagnose

Druckentlastungskanal

Steuerkasten

- weitere Spannungsanzeigen
- weitere Schutzrelais
- weitere Mess- und Automatisierungskomponenten

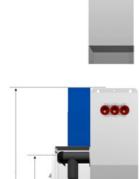
Optionen

CGMCOSMOS-RB-Pt

IEC

ANSI / IEEE

Abmessungen



[mm]

[in]

[14]

> 90 / 100 kg 220 Lbm

CGMCOSMOS-RC

Kabelhochführungsfunktion

Modulfähiges luftisoliertes Schaltfeld mit Kabelhochführung (bis Hauptsammelschiene). Optional Doppelkabelhochführungsfunktion (R2C).

Erweiterbarkeit: rechts oder links.

Elektrische Daten				IEC	ANSI	/ IEEE
Bemessungsspannung	Ur	[kV]	12*	24	15,5	27
Bemessungsfrequenz	f _r	[Hz]		50 / 60	50 ,	[/] 60
Nennstrom						
Einspeisung	l _r	[A]		400 / 630	60	00
Störlichtbogenklassifizierung	L	AC	AFL 20**	kA 1s/ 25## kA 1 s	AFL 20*	* kA 1s

- * Auf Anfrage auch mit U_r= 7,2 kV verfügbar. ** Versuchsdurchführung bei: 21 kA/52,5 kA.
- ## Verfügbarkeit erfragen

Anwendungen

Anschlusskabelgehäuse zur Hauptsammelschiene der Transformatorstation, rechts (RCd) oder links (RCi).

Konfiguration

Schaltfeld

- IAC AFLR 20 kA 1 s
- IAC AFLR 25 kA 1s
- 1740 mm Höhe des Schaltfelds

Verbindungsmöglichkeiten

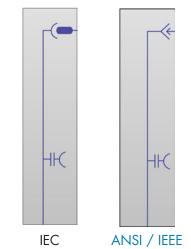
Erweiterbarkeit: rechts RCd oder links RCi

Anzeigen

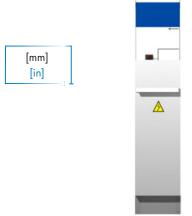
- Kapazitive Spannungsanzeige
- Kapazitive Spannungsanzeige ekorIVDS

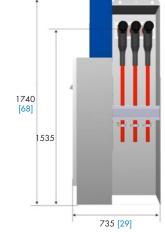
Optionen

CGMCOSMOS-R2C


Doppelkabelhochführungsfunktionseinheit (Breite = 550 mm, Gewicht = 60 kg

CGMCOSMOS-CL


Seitlich zugeführte Box (Breite 0 365 mm, Gewicht = 20 kg)


Abmessungen

[14]

40 kg 88 Lbm

CGMCOSMOS-M

Messfunktion

Modulares luftisoliertes Schaltfeld mit Messfunktion.

Elektrische Daten			IE	С	
Bemessungsspannung	Ur	[kV]	12*	24	
Bemessungsfrequenz	fr	[Hz]	50 / 60	50 / 60	
Nennstrom					
Hauptsammelschienen- und Schaltfeldanschluss	l _r	[A]	400 / 630	400 / 630	
Bemessungs- Kurzzeit- Stehwechselspannu	ng (1 mir	1)			
zwischen Phase und Erde und zwischen Phasen	U₄	[kV]	28	50	
Bemessungs-Stehblitzstossspannung					
zwischen Phase und Erde und zwischen Phasen	U _p	[kV]	75	125	
Störlichtbogenklassifizierung	l,	AC .	AFL 20** kA 0.5	s / 20** kA 1 s	
Bemessungs-Kurzzeitstrom Wert t _k =3 s	=3 s I, [kA] 20**				

^{*} Auf Anfrage auch mit U_r= 7,2 kV verfügbar. ** Versuchsdurchführung bei: 21 kA/52,5 kA

Anwendungen

Das Spannungs- und Strommesswandlergehäuse ermöglicht die Kommunikation mit der Hauptsammelschiene der Transformatorstation über Sammelschienen oder trockene Kabel.

Konfiguration

Schaltfeld

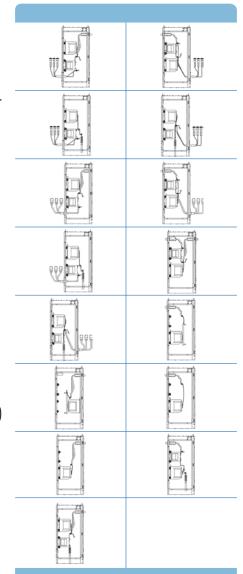
- IAC AFL 20 kA 0,5 s
- IAC AFL 20 kA 1s
- Heizwiderstand
- Schutznetz
- Verriegelungen

Sammelschienenanschlüsse

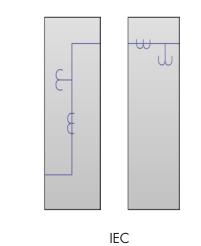
- Fester unabgeschirmter Anschluss oben
- Fester unabgeschirmter Anschluss unten

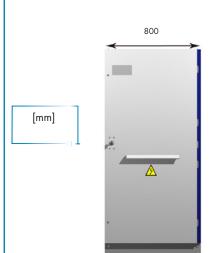
Kabelanschlüsse

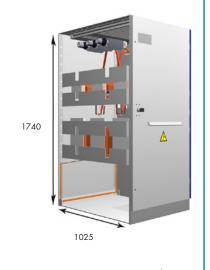
Kabelanschluss unten


Messwandler

- Installierte Stromwandler (3 CTs)
- Installierte Spannungswandler (3 CTs)
- ohne Wandler


Steuerkasten


weitere Mess- und Automatisierungskomponenten


Optionen

Abmessungen

165* kg (*) leeres Gehäuse

CGMCOSMOS-2LP

Sicherungsschutz- und Netzfunktionen

Kompaktes Schaltfeld (RMU) mit zwei Netzfunktionen und einer Sicherungsschutzfunktion, in einem Gasbehälter. erweiterbar: rechts, links, auf beiden Seiten oder keine.

Elektrische Daten		IEC		L		Р		
Bemessungsspannung	Ur	[kV]	12*	24	12	24		
Bemessungsfrequenz	f _r	[Hz]	50	/ 60	50	/ 60		
Nennstrom								
Hauptsammelschienen- und Schaltfeldanschluss	l _r	[A]	400	/ 630	400	/ 630		
Einspeisung	l _r	[A]	400	/ 630		-		
Ausgang zum Transformator	l _r	[A]		-	2	00		
Bemessungs- Kurzzeit- Stehwechselspannung (1 min)								
zwischen Phase und Erde und zwischen Phasen	U₄	[kV]	28	50	28	50		
über Trennungsstrecke	U₄	[kV]	32	60	32	60		
Bemessungs-Stehblitzstossspannung								
zwischen Phase und Erde und zwischen Phasen	Up	[kV]	75	125	75	125		
über Trennungsstrecke	U _p	[kV]	85	145	85	145		
Störlichtbogenklassifizierung	I.	AC			s / 20** kA 1s A 1s / 25## kA 1 s			
Schalter - Trennschalter				IEC 6	2271-103			
Bemessungs-Kurzzeitstrom (Hauptstromkreis)								
Wert $t_k = 1$ s oder 3 s	I _k	[kA]	16 / 20** / 25#	16 / 20** / 25#	16 / 20** / 25#	16 / 20** / 25#		
Spitzenwert	I _p	[kA]	40 / 52** / 62,5#	40 / 52** / 62,5#	40 / 52** / 62,5#	40 / 52** / 62,5*		
Bemessungs-Trennkraft der hauptsächlich aktiven Stromstärke	I ₁	[A]	400	/ 630	2	00		
Bemessungs-Kabelausschaltvermögen ohne Last	I _{4a}	[A]	50 ,	/ 1.5		-		
Ausschaltstrom geschlossene Schleife	I _{2a}	[A]	400	/ 630		-		
Bemessungs-Trennkraft Fehlerstrom nach Erdung	I _{6a}	[A]	30	00	-			
Bemessungs-Trennkraft Kabel/Leitung ohne Last bei Fehlerstro- merdung	I _{6b}	[A]	10	00	-			
Hauptschalter Einschaltvermögen (Spitzenwert)	I _{ma}	[kA]	40 / 52** / 62,5#	40 / 52** / 62,5#	40 / 52** / 62,5#	40 / 52**		
Schalterkategorie								
Mechanische Dauerfestigkeit				1000-M1 (manuell) / 5000-M2 (Motor)			
Schaltzyklen (Kurzschlusseinschaltstrom) Klasse				5	i-E3			
Kombiniertes Schaltrelais (ekorRPT) Übernahmestrom								
Ausschaltung Imax gemäß TDito IEC 62271-105	,	[A]		-	12	250		
Schalter-Sicherung-Kombination Übergangsstrom								
Ausschaltung I _{max} gemäß TD _{itronsfer} IEC 62271-105		[A]		-	1.5	500		
Erdungsschalter				IEC 6	2271-102			
Bemessungs-Kurzzeitstrom (Erdungsschaltkreis)								
Wert $t_k = 1$ s oder 3 s	I _k	[kA]	16 / 20** / 25#	16 / 20** / 25#	1	/ 3		
Spitzenwert	I _p	[kA]	40 / 52** / 62,5#	40 / 52** / 62,5#	2,5	/ 7.5		
Erdungsschalter Einschaltvermögen (Spitzenwert)	Ima	[kA]	40 / 52** / 62,5#	40 / 52** / 62,5#		/ 7.5		
Erdungsschalter Kategorie								
Mechanische Dauerfestigkeit (manuell)				100	00-M0			
Schaltzyklen (Kurzschlusseinschaltstrom) Klasse			5-E2					

Anwendungen

RMU, die Funktionen der Netz- und Schutzschaltfelder umfassen.

^{*} Auf Anfrage auch mit U.= 7,2 kV verfügbar. ** Versuchsdurchführung bei: 21 kA/52,5 kA. # Wert nur gültig für tk = 1 s ## Verfügbarkeit erfragen

Konfiguration Schaltfeld

- ☐ Störlichtbogen IAC AFLR☐ 20 kA 1 s ☐ 25 kA 1 s*
- Störlichtbogen AFL□ 16 kA 1 s □ 20 kA 1s
- Störlichtbogen AF
 - □ 16 kA 0.5 s □ 20 kA 0.5 s □ 16 kA 1 s □ 20 kA 1 s
- 1740 mm Höhe des Schaltfelds
- ☐ 1300 mm Höhe des Schaltfelds

(*) Verfügbarkeit erfragen Gastank

Behälter aus Edelstahl

Gasdruckanzeige:

Druckanzeige

Vorderer Anschluss:

Kabeldurchführung

Seitlicher Anschluss:

- beidseitig erweiterbar
- ☐ links erweiterbar / rechts blind
- rechts erweiterbar / links blind
- beide Seiten blind

Art des seitlichen Anschlusses:

- □ Buchse
 - □ rechts □ links beide
- □ Konusbuchse
 - □ rechts □ links □ beide

Schaltantrieb

- Betätigungshebel
- Manuelle Antriebe B und BR-Typ
- Motorisierter Mechanismus Typ BM
- Manueller Mechanismus Typ AR
- Motorisierter MechanismusTyp ARM
- Akustischer Alarm ekorSAS
- Kapazitive Spannungsanzeige ekorVPIS
- ☐ Kapazitive Anzeige für anliegende/nicht anliegende Spannung ekorIVDS
- Sonstige kapazitiveSpannungsanzeigen
- Integrierte Steuer- und Überwachungseinheit ekorRCI
- Transformatorschutzeinheit ekorRPT
- Spannungsanzeigeeinheit ekorRTK

Zusätzliche Verriegelungen:

- Elektrische Verriegelungen
- Schlüsselverriegelung
- Vorhängeschloss

Kabelschottraum

- Schrauben Typ IEC-Durchführung
- Schrauben Typ ANSI-Durchführung
- Abdeckung für einen Kabelanschlussstecker pro Phase
- Erweiterte
 Kabelbereichabdeckung für doppelten Kabelanschluss
- Erweiterte
 Kabelbereichabdeckung für einfachen Kabelanschluss plus Überspannungsableiter
- Teilentladungserkennung für Netzwerkdiagnose

Druckentlastungskanal

□ Kamin hinten

Steuerkasten

- weitere Spannungsanzeigen
- weitere Schutzrelais
- weitere Mess- und Automatisierungskomponenten

Optionen

CGMCOSMOS-2L: 2 Einspeisungen

Breite: 730 mm, Gewicht: 210 kg

CGMCOSMOS-3L: 3 Einspeisungen

Breite: 1095 mm, Gewicht: 400 / 310 kg

CGMCOSMOS-3LP:

3 Einspeisungen + 1 Sicherungsschutzfunktion

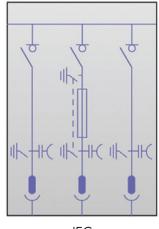
Breite: 1565 mm, Gewicht: 385 / 355 kg

CGMCOSMOS-2L2P

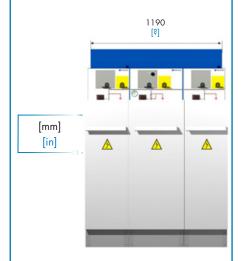
2 Einspeisungen + 2 Sicherungsschutzfunktion

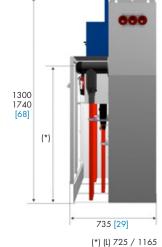
Breite: 1670 mm, Gewicht: 430 / 400 kg

CGMCOSMOS-3L2P


3 Einspeisungen + 2 Sicherungsschutzfunktion

Breite: 2035 mm, Gewicht: 525 / 490 kg


CGMCOSMOS-2LPT


Integrale kompakte Einheit mit Fernsteuerungsfunktionen

Abmessungen

IEC

(*) (L) 725 / 1165 (P) 410 / 850

290 / 310 kg

CGMCOSMOS-2LV

NEU 2013!

Leistungsschalterschutz- und Netzfunktionen

Kompaktes Schaltfeld (RMU) mit zwei Netzfunktionen und einer Sicherungsschutzfunktion in einem Gasbehälter. Erweiterbarkeit: rechts, links, auf beiden Seiten oder keine.

Elektrische Daten	IEC		L	V
Bemessungsspannung	Ur	[kV]	24	24
Bemessungsfrequenz	f _r	[Hz]	50 / 60	50 / 60
Nennstrom				
allgemeine Sammelschiene	l _r	[A]	400 / 630	400 / 630
Einspeisung	I _r	[A]	400 / 630	-
Ausgang zum Transformator	l _r	[A]		250
Bemessungs- Kurzzeit- Stehwechselspannung (1 min)				
zwischen Phase und Erde und zwischen Phasen	U _d	[kV]	50	50
zwischen Phase und Erde und zwischen Phasen	U _d	[kV]	60	60
Bemessungs-Stehblitzstossspannung				
zwischen Phase und Erde und zwischen Phasen	Up	[kV]	125	125
über Trennungsstrecke	U _p	[kV]	145	145
Störlichtbogenklassifizierung	l	AC	AFL[R] 20* kA	1s / 25## kA 1 s
Leistungsschalter				IEC 62271-100
Bemessungs-Kurzzeitstrom (Hauptstromkreis)			-	
Wert $t_k = 1$ s oder 3 s		[kA]	-	16 / 20* / 25
Spitzenwert	I _p	[kA]		40 / 52* / 62,5
Bemessungs-Ausschalt- und Einschaltvermögen			-	
Bemessungs-Trennkraft der hauptsächlich aktiven Stromstärke	I ₁	[A]	-	400 / 630
Trennkraft bei Kurzschluss	I _{sc}	[kA]	-	16 / 20* / 25
Hauptschalter Einschaltvermögen (Spitzenwert)	Ima	[kA]		40 / 52* / 62,5
Bemessungs-Schaltablauf			-	CO-3 min-CO
Selbstschalterklasse				
Mechanische Festigkeit (Schaltungen - Klasse)			-	2000 (M2)
Elektrische Festigkeit (Klasse)			-	E2
Schalter - Trennschalter			IEC 62271-103	IEC 62271-102
Bemessungs-Kurzzeitstrom (Hauptstromkreis)				-
Wert $t_k = 1$ s oder 3 s	Ik	[kA]	16 / 20* / 25	-
Spitzenwert	I _p	[kA]	40 / 52* / 62,5	-
Bemessungs-Trennkraft der hauptsächlich aktiven Stromstärke	- I ₁		400 / 630	-
Hauptschalter Einschaltvermögen (Spitzenwert)	I _{ma}		40 / 52* / 62,5	-
Schalter - Trennschalter Kategorie				-
Mechanische Dauerfestigkeit			1000-M1 (manuell) / 5000-M2 (Motor)	
Schaltzyklen (Kurzschlusseinschaltstrom) Klasse			5-E3	-
Trenn- und Erdungsschalter			IEC 62271-102	IEC 62271-102
Bemessungs-Kurzzeitstrom (Erdungsschaltkreis)				
Wert $t_k = 1$ s oder 3 s	-I _k	[kA]	16 / 20* / 25	16 / 20* / 25
Spitzenwert	I _p	[kA]	40 / 52* / 62,5	40 / 52* / 62,5
Hauptschalter Einschaltvermögen (Spitzenwert)	I _{ma}	[kA]	40 / 52* / 62,5	40 / 52* / 62,5
Erdungsschalter Kategorie				
			2000-M1	2000-M1
<u> </u>	—			
Mechanische Dauerfestigkeit Schaltzyklen (Kurzschlusseinschaltstrom) Klasse			2000-M1 5-E2	2000-M1 5-E2

^{*} Versuchsdurchführung bei: 21 kA/52,5 kA. ## Verfügbarkeit erfragen

Anwendungen

RMU, die Funktionen der Netz- und Leistungsschaltfelder umfassen.

Konfiguration

Schaltfeld

- Störlichtbogen IAC AFLR20 kA 1s □ 25 kA 1 s*
- □ 1740 mm Höhe des Schaltfelds
- 1300 mm H\u00f6he des Schaltfelds
- (*) Verfügbarkeit erfragen

Gastank

Behälter aus Edelstahl

Vorderer Anschluss:

Kabeldurchführung

Seitlicher Anschluss:

- beidseitig erweiterbar
- □ links erweiterbar / rechts blind
- rechts erweiterbar / links blind
- □ beide Seiten blind

Art des seitlichen Anschlusses:

- □ Buchse
 - □ rechts □ links beide
- - □ rechts □ links □ beide

Schaltantrieb

- Betätigungshebel
- Schaltechanismus Typ B
- Motorisierter Mechanismus Typ BM
- Manueller Mechanismus Typ AV
- Kapazitive Spannungsanzeige ekorVPIS
- Kapazitive Anzeige für anliegende/nicht anliegende Spannung ekorIVDS
- Sonstige kapazitiveSpannungsanzeigen

Zusätzliche Verriegelungen:

- □ Elektrische Verriegelungen
- Schlüsselverriegelung
- Vorhängeschloss

Kabelschottraum

- Schrauben Typ IEC-Durchführung
- Abdeckung für einen Kabelanschlussstecker pro Phase

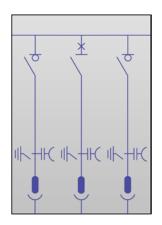
Druckentlastungskanal

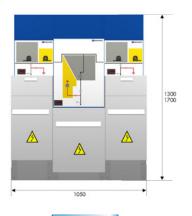
Steuerkasten

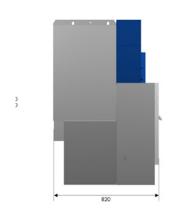
- weitere Spannungsanzeigen
- weitere Schutzrelais
- weitere Mess- und
 Automatisierungskomponenten

Optionen

CGMCOSMOS-2L2V*


2 Einspeisungen + 2 Sicherungsschutzfunktion


(*) Verfügbarkeit erfragen


CGMCOSMOS-2LV (SANS Typ) gemäß SANS-Normen erhältlich.

siehe www.ormazabal.com

Abmessungen

[mm]

420 kg

CGMCOSMOS-RLP

Sicherungsschutz-, Netz- und Schienenhochführungsfunktionen

Kompaktes Schaltfeld mit einer Schienenhochführungsfunktion, einer Sicherungsschutzfunktion und einer Netzfunktion, Sicherungsschutz- und Leitungsschaltfelder, die sich in einem Behälter befinden.

erweiterbar: rechts, links, auf beiden Seiten oder keine.

Elektrische Daten		IEC		L-R		Р
Bemessungsspannung	Ur	[kV]	12*	24	12	24
Bemessungsfrequenz	fr	[Hz]	50 ,	/ 60	50	/ 60
Nennstrom						
Hauptsammelschienen- und Schaltfeldanschluss	l _r	[A]	400 ,	/ 630	400	/ 630
Einspeisung	I _r	[A]	400 ,	/ 630		-
Ausgang zum Transformator	I _r	[A]		-	2	00
Bemessungs- Kurzzeit- Stehwechselspannung (1 min)						
zwischen Phase und Erde und zwischen Phasen	U _d	[kV]	28	50	28	50
über Trennungsstrecke	U _d	[kV]	32	60	32	60
Bemessungs-Stehblitzstossspannung						
zwischen Phase und Erde und zwischen Phasen	Up	[kV]	75	125	75	125
über Trennungsstrecke	Up	[kV]	85	145	85	145
Störlichtbogenklassifizierung	l	AC			/ 20** kA 1s 1s / 25## kA 1 s	
				L		P
Schalter - Trennschalter			IEC 622	271-103	IEC 62:	271-103
Bemessungs-Kurzzeitstrom (Hauptstromkreis)						
Wert $t_k = 1$ s oder 3 s	l _k	[kA]	16 / 20** / 25#	16 / 20** / 25#	16 / 20** / 25#	16 / 20** / 25#
Spitzenwert	I _p	[kA]	40 / 52** / 62,5#	40 / 52** / 62,5*	40 / 52** / 62,5#	40 / 52** / 62,5
Bemessungs-Trennkraft der hauptsächlich aktiven Stromstärke	- I ₁	[A]	400 / 630		2	00
Bemessungs-Kabelausschaltvermögen ohne Last	I _{4a}	[A]	50 /	1.5	-	-
Ausschaltstrom geschlossene Schleife	- I _{2α}	[A]	400 /	/ 630	-	-
Bemessungs-Trennkraft Fehlerstrom nach Erdung	I _{6a}	[A]	30	00	-	-
Bemessungs-Trennkraft Kabel/Leitung ohne Last bei Fehlerstromerdung	I _{6b}	[A]	10	00	-	-
Hauptschalter Einschaltvermögen (Spitzenwert)	I _{ma}	[kA]	40 / 52** / 62,5#	40 / 52** / 62,5#	40 / 52** / 62,5#	40 / 52** / 62,5
Schalterkategorie						
Mechanische Dauerfestigkeit				1000-M1 (manuell)	/ 5000-M2 (Motor)	
Schaltzyklen (Kurzschlusseinschaltstrom) Klasse				5-	E3	
Kombiniertes Schaltrelais (ekorRPT) Übernahmestrom						
Ausschaltung Imax gemäß TDito IEC 62271-105		[A]	-	-	1250	1250
Schalter-Sicherung-Kombination Übergangsstrom						
Ausschaltung I _{max} gemäß TD _{itransfer} IEC 62271-105		[A]	-	-	1500	1300
		. ,		-R		Р
Erdungsschalter				IEC 622	271-102	
Bemessungs-Kurzzeitstrom (Erdungsschaltkreis)						
Wert $t_k = 1$ s oder 3 s	l _k	[kA]	16 / 20** / 25#	16 / 20** / 25#	1	/ 3
Spitzenwert	I _p	[kA]		40 / 52** / 62,5#	2,5	/ 7.5
Erdungsschalter Einschaltvermögen (Spitzenwert)	I _{ma}	[kA]		40 / 52** / 62,5#		/ 7.5
Erdungsschalter Kategorie				,		
Mechanische Dauerfestigkeit (manuell)				100	0-M0	
Schaltzyklen (Kurzschlusseinschaltstrom) Klasse					 E2	

Anwendungen

Kompaktes Schaltfeld für RES-Anwendungen, die die Merkmale der Sammelschienenhochführung (OL und P) und Kabelanschlussfeldern (L) beinhalten.

^{**} Versuchsdurchführung bei: 21 kA/52,5 kA.

[#] Wert nur gültig für tk = 1 s ## Verfügbarkeit erfragen

Konfiguration

Schaltfeld

- Störlichtbogen IAC AFLR20 kA 1s □ 25 kA 1 s*
- Störlichtbogen AFL□ 16 kA 1 s □ 20 kA 1s
- □ Störlichtbogen AF
 □ 16 kA 0.5 s □ 20 kA 0.5 s
 □ 16 kA 1 s □ 20 kA 1 s
- 1740 mm Höhe des Schaltfelds
- □ 1300 mm Höhe des Schaltfelds
- (*) Verfügbarkeit erfragen

Gastank

Behälter aus Edelstahl

Gasdruckanzeige:

Druckanzeige

Vorderer Anschluss:

Kabeldurchführung

Seitlicher Anschluss:

- beidseitig erweiterbar
- □ links erweiterbar / rechts blind
- rechts erweiterbar / links blind
- □ beide Seiten blind

Art des seitlichen Anschlusses:

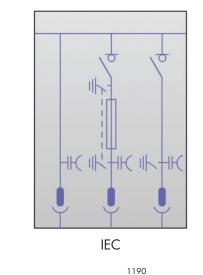
- □ Buchse□ rechts □ links beide
 - | Konusbuchse □ rechts □ links □ beide
- **Schaltantrieb**
 - Betätigungshebel
 - Manuelle Antriebe B und BR-Typ
 - Motorisierter Mechanismus Typ BM
- Manueller Mechanismus Typ AR
- Motorisierter Mechanismus Typ ARM
- Akustischer Alarm ekorSAS
- Kapazitive Spannungsanzeige ekorVPIS
- Kapazitive Anzeige für anliegende/nicht anliegende Spannung ekorIVDS
- Sonstige kapazitiveSpannungsanzeigen

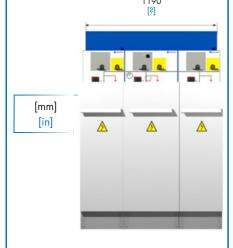
- Integrierte Steuer- und Überwachungseinheit ekorRCI
- Transformatorschutzeinheit ekorRPT
- Spannungsanzeigeeinheit ekorRTK

Zusätzliche Verriegelungen:

- □ Elektrische Verriegelungen
- □ Schlüsselverriegelung
- Vorhängeschloss

Kabelschottraum


- Schrauben Typ IEC-Durchführung
- Schrauben Typ ANSI-Durchführung
- Abdeckung für einen Kabelanschlussstecker pro Phase
- Erweiterte
 Kabelbereichabdeckung für doppelten Kabelanschluss
- Erweiterte
 Kabelbereichabdeckung für einfachen Kabelanschluss plus Überspannungsableiter
- Teilentladungserkennung für Netzwerkdiagnose


Druckentlastungskanal

Steuerkasten

- weitere Spannungsanzeigen
- weitere Mess- und Automatisierungskomponenten

Abmessungen

275 / 295 kg

Weitere Komponenten und Zubehörteile

HRC Sicherungen

Merkmale:

- Waagrechte Sicherungsträger
- Zugang über die Vorderseite
- Phasenunabhängige Räume
- in Druckbehälter geschützt
- Isolierung und Abdichtung gegen äußere Einwirkungen (Verschmutzung, Temperaturänderungen, aggressive Witterungsbedingungen, sogar Überschwemmungen)
- Interne Verriegelungen für einen sicheren Zugang zum Sicherungshalterbereich

Schutz mit Sicherungen

Der Schutz vor Kurzschlüssen im Mittelspannungsnetz erfolgt über die Schutzfunktionen mit Sicherungen.

Die Sicherungshalterröhren erreichen über deren gesamte Länge eine gleichmäßige Temperatur, wenn sie sich horizontal und geschützt im Gasbehälter befinden. Bei geschlossenem Deckel sind sie vollständig hermetisch abgeschlossen und halten die Dichtheit gegenüber Überschwemmungen und externer Verunreinigung aufrecht.

Gemäß Norm IEC 62271-105 kann das Verhältnis Schalter-Sicherung "verknüpft" oder "kombiniert" sein. Im letzterem Fall wird die Auslösung jeder einzelnen Sicherung an der Übersichtsdarstellung auf der Frontseite des Schaltfelds angezeigt.

Schutz mit Sicherungen und Auslösespule

Die kombinierte Schalter-Sicherung-Option ermöglicht die Öffnung des Trennschalters durch ein externes Signal, das z. B. vom Thermostat des Transformators im Falle einer Überhitzung gesendet werden kann.

Auswahl der Sicherung nach IEC-Normen

			Transformator-Bemessungsleistung mit Überlast [kVA]															
U, Netz	U _r Sicherung	25	50	75	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000
[kV]	[kV]		Bemessungsstrom der Sicherung IEC 60282-1 [A]															
10	6 / 12	6,3	10	16	16	20	20	25	31,5	40	50	63	63	80	100	160	200	-
13,5	10 / 24	6,3	6,3	10	16	16	20	20	25	31,5	40	50	63	63	80	100	-	-
15	10 / 24	6,3	6,3	10	16	16	16	20	20	25	31,5	40	50	63	80	80	-	-
20	10 / 24	6,3	6,3	6,3	10	16	16	16	20	20	25	31,5	40	50	50	63	80	125

Auswahl der Sicherung nach IEEE-Normen

					Tr	ansfo	rmato	r-Ben	nessur	ngslei	stung	ohne	Überl	ast [k\	/A]			
U, Grid	U _r Sicherung	25	50	75	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000
[kV]	[kV]		Bemessungsstrom der Sicherung [A]															
7,2	6 / 12	6,3	16	16	20	20	25	40	40	50	63	80	100	160	200	250	-	-
12,5	10 / 24	6,3	6,3	16	16	16	20	20	25	31,5	40	50	63	80	80	125	-	-
13,2	10 / 24	6,3	6,3	10	16	16	20	20	25	31,5	40	50	63	63	80	100	-	-
14,4	10 / 24	6,3	6,3	10	16	16	16	20	20	25	40	40	50	63	80	80	-	-
25	10 / 24	6,3	6,3	6,3	6,3	10	16	16	16	20	20	25	31,5	40	50	50	80	80

Anmerkungen:

- Empfohlene Sicherungen: Marke SIBA, Schlagstift Typ mittel, gemäß IEC 60282-1 (verlustarme Sicherungen).
- Die Werte für Kombisicherungen werden in blau angezeigt.
- Die Einheit Schalter-Sicherungen wurde einer Erwärmungsprüfung unter normalen Betriebsbedingung gemäß der Norm IEC 62271-1 unterzogen.
- Ein für 292 mm 6/12 kV Sicherungen geeigneter Sicherungshalter steht zur Verfügung.
- Größen, die fett angegeben sind, gelten für die Länge 442 mm.
- Beim Durchbrennen einer Sicherung empfehlen wir, alle drei Sicherungen zu wechseln.
- Für Informationen bezüglich anderer Fabrikate und bei Trafoüberlast wenden Sie sich bitte an Ormazabal.

Anzeigen Akustischer Alarm ekorSAS

Bei dem akustischen Alarm zur Erdungsvermeidung ekorSAS handelt es sich um eine akustische Anzeige, die mit der Schaltwelle des Erdungstrenners und der Anzeige für anliegende Spannung **ekorVPIS** verknüpft ist.

Der Alarm wird ausgelöst, wenn die Mittelspannungskabel des Schaltfelds Spannung führen und der Griff für den Zugang zur Betätigungswelle des Erdungsschalters bedient wird. In diesem Moment warnt ein akustischer Alarm den Bediener vor der Gefahr, einen Kurzschluss im Netz zu verursachen, wenn er diese Bedienung ausführt. Dieser Alarm bietet somit eine höhere Sicherheit für die Güter und Personen und gewährleistet eine kontinuierliche Versorgung.

Spannungsanzeigegerät ekorVPIS

Das ekorVPIS ist eine selbstgespeiste Anzeigeeinheit an den Schaltfeldern, die die anliegende Spannung in den Phasen über drei kontinuierlich aufleuchtende Anzeigelampen anzeigt. Ihre Bauweise entspricht der Norm IEC 62271,-206.

Für die Durchführung des Tests der Phasenübereinstimmung stehen leicht zugängliche Prüfstellen zur Verfügung.

Ormazabals ekorSPC

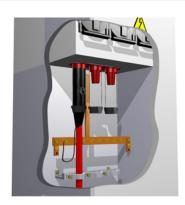
Phasenvergleicher und **ekorIVDS** zur Erkennung des Anliegens/Fehlens von Spannung können auf Anfrage geliefert werden.

Kabelanschlüsse

Buchsen EN 50181 & IEEE 396

- Gefertigt aus Kunstharz bestehen sie die dielektrischen Prüfungen und die Teilentladungsprüfungen.
- Es gibt drei verschiedene Typen:
- Steckverbinder bis 250 A (IEC) & 200 A (IEEE)
- Steckverbinder bis 400 A
- Schraubverbinder bis 630 A (IEC) & 600 A (IEEE)
- Befinden sich im Kabelraum.
 Optional k\u00f6nnen sie auf der
 Seite der Schaltfelder zur
 direkten Verbindung mit der
 Hauptsammelschiene angeordnet
 werden.

Durchführung


Kabelsteckteile

Merkmale:

- Für einadriges oder dreiadriges Kabel.
- Für Trockenkabel oder imprägniertes Kabel.
- Abgeschirmt oder unabgeschirmt.
- Abgewinkelt oder gerade.
 Detaillierte Information:
- Direkte Verbindung mit den im Kabelbereich oder auf der Seite befindlichen Durchführungen über Steckoder Schraubverbinder (Nennstrom größer als 400 A oder Kurzschlussstrom größer oder gleich 16 kA).
- 250 A-Steckverbinder (gerade oder abgewinkelte Anschlüsse für hinteren Kabelausgang) in Abgängen zum Transformator (Kabelbereich) für Sicherungsschutzfunktionen.
- Abgeschirmte Steckverbinder für Leistungsschalterfunktionen.

	Α	bstand (d)
CGMCOSMOS-L / RB	[mm] (In)	[310] (12.2)
CGMCOSMOS-V	[mm] (ln)	[500] (19.68)
CGMCOSMOS-P		Waagrecht

CGMCOSMOS-P Bushing position

Zubehör

- Steckbare T-Abzweigung
- Steckbare Kreuz-Abzweigung
- Einschubplatten
- Drosseln
- Anschlussklemmen
- Überspannungsableiter

Informationen über andere Typen und Werte erhalten Sie bei **Ormazabal**.

Ersatzteile Metallkapselung

Abdeckungen

• Hilfsprofile für unebene Böden

 Seitlich zugeführte Box (CGMCOSMOS-CL)

Bedienelemente

 Haupthebel Schalter -Trennschalter

Antireflex-Hebel f
ür BR-Antrieb

• Hebel für Leistungsschalter

Verbindungsmöglichkeiten

 ORMALINK Anschluss-Satz Erdungsschiene, Schrauben und Muttern, Anweisungen und weiteren erforderlichen Elementen für den korrekten Zusammenbau zweier Schaltfelder

Abschlusselemente-Satz
 Mit Abschlussdeckeln,
 Metallabdeckungen für den
 Einbau an der Seitenwand eines
 Schaltfeldes, Anweisungen und
 weitere erforderliche Elemente für den Zusammenbau.

Sicherungsschutz

- 12 kV Sicherungseinschub.
- 24 kV Sicherungseinschub.
- Sicherungseinschub für 292 mm
 6 / 12 kV Sicherungen

Handhabung, Aufstellung und Kundendienst

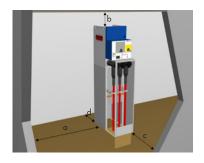
Handhabung

- Die reduzierte Größe und das verringerte Gewicht erleichtern die Handhabung und Aufstellung.
- Sichere Lieferung des Schaltfelds:
- Aufrechte Stellung auf einer Palette, in Schutzfolie eingeschlagen und mit Polystrol-Kantenschutzelementen

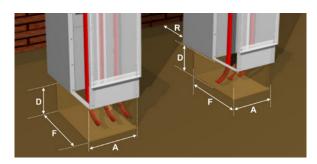
- Transportmethoden (bis 5 Betriebseinheiten):
- Heben: Gabelstapler oder manuell zu bewegender Palettenhubwagen Alternativ: untergelegte Rollen
- Heben: Schlingen und Hebezeug

 Ergonomisches Design für einfaches Anschließen und Befestigen des Schaltfelds am Boden

Für Handhabungs- und Installationsanweisungen die entsprechenden Anleitungen bei Ormazabal anfordern.

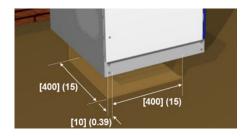

In Gebäuden

- Leichte Beförderung mit Palletenhubwagen (für Standardtüren und Aufzüge)
- Geringe Abmessungen: Mindestraumhöhe
- Betrieb, Erweiterung und Abbau auf engstem Raum
- Keine Gashandhabung vor Ort
- Bei unebenen Böden oder um Kabelschachtarbeiten zu vermeiden. wahlweise die Installation auf Hilfsprofilen.


Mindestabstand bei Installation [mm] (Zoll)								
Seitenwand (a)	[100] (4)							
Decke (b)	[500] (20)							
Freiraum vorn (c)	[500] (20)							
Rückwand (d)	[>100] (>4)**							

** Außer für CGMCOSMOS-V (>50 mm) und CGMCOSMOS-M (0 mm) Bei Kamin hinten = 0 mm

Der erforderliche Raum für die Erweiterung der Einheit mit einem weiteren Schaltfeld beträgt 150 mm plus die Breite des neuen Schaltfelds.


Maximale Schachtabmessung für störlichtbogengeprüfte Schaltfelder

Funktion	Schaltfeldhöhe [mm] (Zoll)	A [mm] (Zoll)	F [mm] (Zoll)	(1) D [mm] (Zoll)		(2) D [mm] (Zoli)	
				Einadriges Kabel	3-adriges Kabel	Einadriges Kabel	3-adriges Kabel
L, RB & RC	[1300] (51) [1740] (68)	[285] (11)	[590] (23)	[400] (15) [600] (23)	[350] (13) [600] (23)	[400](15) [250] (9.8)	[350](13) [250](9,8)
Р	[1300] (51) [1740] (68)	[390] (15)	[590] (23)	[500] (19) (R*) [300] (11)(R*)	auf Anfrage	[500] (19) (R*) [300](11)(R*)	auf Anfrage
٧	[1740] (68)	[520](20)	[590] (23)	[500](19)	[850](33)	[600](23)	[850](33)

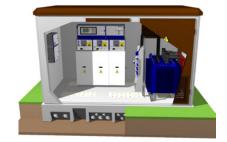
Funktion	Schaltfeldhöhe [mm] (Zoll)	A [mm] (Zoll)	F [mm] (Zoll)	(1) D [mm] (Zoll)		(2) D [mm] (Zoll)	
				Einadriges Kabel	3-adriges Kabel	Einadriges Kabel	3-adriges Kabel
L, RB & RC	[1300] (51) [1740] (68)	[285] (11)	[590] (23)	[600](23) [600](23)	[600](23) [600](23)	[600](23) [600](23)	[600](23) [600](23)
Р	[1300] (51) [1740] (68)	[390] (15)	[590] (23)	[500](19) [300](11)	auf Anfrage	[500](19) [300](11)	auf Anfrage
٧	[1740] (68)	[520](20)	[590] (23)	[500](19)	[850](33)	[600](23)	[850](33)

Schachtabmessung [mm] (Zoll) für Messfeld

Tiefe des Schachts, geeignet für alle Kabeltypen: 800 mm (31 inch)

Die Schachtabmessungen sind abhängig vom Mindestbiegeradius der verwendeten Kabel.

Die unten angegebenen Abmessungen gelten für den größten Schacht.


Um für einen speziellen Kabeltyp die Schachtabmessung mit den optimalen Maßen zu erhalten (geringste Schachtabmessung), wenden Sie sich bitte an **Ormazabal**.

In mobilen oder fabrikfertigen Transformatorstationen

- Schlüsselfertige Lösungen (vollständig montiert, geprüft und Transport ab Fabrik)
- Einheitliche Qualität
- Erhebliche Reduzierung von Installationskosten und -zeit
- Vor-Ort-Installation des Schaltfelds möglich
- Vielfältige Ausführungen von Transformatorstationen von Ormazabal:

Begehbar, unterirdisch, Stand-Bauform, kompakt...

 Disponibilität von betriebsfertigen Transformatorstationen innerhalb kürzester Zeit

In Windturbinen

- Off-Shore- und On-Shore-Windparks
- Seit 1995 Lieferung von Mittelspannungsschaltfeldern (GIS) für kommerzielle RES-Erzeugung
- Über 10 Jahre Erfahrung im Offshore-Windsektor

Inbetriebnahme und Kundendienst

Services

- Technischer Support
- Engineering
- Beschaffung
- Auftragsvergabe
- Aufstellung
- Schaltfeldanschluss
- Erdung
- Kabel-/Schienenanschluss
- Inbetriebnahme
- Relaiskonfiguration
- Phasenvergleich
- Unterspannungsetzen
- Prüfungen
- Kundendienst
- Wartung
- Schulung

Recycling und Verwertung

Im Rahmen seines Kundendienstes bietet Ormazabal Stromversorgern und Endnutzern elektrischer Energie die Wiederverwertung ihrer Schaltanlagen an.

In den Fertigungsstätten von Ormazabal wurden die entsprechenden Umweltmanagementsysteme implementiert, die die Anforderungen der internationalen Norm ISO 14001 erfüllen und unter anderem durch das Zertifikat für umweltfreundliche Betreibung AENOR CGM-00/38 bescheinigt werden.

Die Schaltfelder des Systems CGMCOSMOS wurden in Übereinstimmung mit den Anforderungen der internationalen Norm IEC 62271-200 entwickelt und gefertigt.

Baulich gesehen und je nach Modell verfügen sie über einen SF₆-abgedichteten Bereich, der den vollen Betrieb der Anlage über die gesamte geschätzte Lebensdauer von 30 Jahren gewährleistet (IEC 62271-200).

Am Lebensende des Produkts darf der Gehalt an SF₆-Gas nicht in die Atmosphäre gelangen. Statt dessen wird das Gas zur Aufbereitung und zum Recycling entsprechend den Anweisungen der Normen IEC 62271-303, IEC 60480 und der Anleitung CIGRE 117 aufgefangen. Ormazabal vermittelt die zusätzlichen Informationen zu einer geeigneten Ausführung dieser Entsorgung für die Sicherheit der Personen und der Umwelt.

